1、初一上数学期末总复习(难点复习)第一讲 思维拓展性复习课教学目标:着重引导学生思考数到代数的变化及加强初中初等几何版块内容的认识,起到举一反三,开发思维的作用,严格贯穿初中数学中最为重要的代数思想、分类讨论思想、数形结合思想!引导篇一、 代数思想及分类讨论思想引导预热题型、已知,计算:(1)(2)变式:探索规律。观察下面由组成的图案和算式,解答问题:求:(1)1+3+5+7+9+99的值; (2)1+3+5+7+9+(2n-1)+(2n+1)+(2n+3)的值例题1、计算 变式练习: 例题2、已知,则_.计算: 探究:变式练习1:若,试求的值。变式练习2:解下列方程例题3、求的最小值并求此时的
2、取值范围. 变式练习1:若有理数满足,求 多少?变式练习2:若,化简 例题4、如果关于字母的代数式的值与的取之无关,求的值。变式练习1:已知A=2x2+3xy-2x-1, B= -x2+xy-1, 且3A+6B的值与x无关,求y的值.变式练习2:若的值恒为常数,求满足的条件及此时常数的值。例题5、已知上山的速度为,下山的速度为,来回的平均速度为( )A、 B、 C、 D、变式练习1:某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )。A、赚16元 B、赔16元 C、不赚不赔 D、无法确定变式练习2:公园门票价格规定如下表:购票张数150张5110
3、0张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人。经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?变式练习3:(环形跑道问题)在800米跑道上有两人练习中长跑,甲的速度为4m/s,乙的速度为3m/s,甲在前,乙在后,两人相距100m,朝同一方向同时起跑,t分钟后第一次相遇,t等于多少分钟?变式练习4:“利海”通讯器材市场,计划用60000元从厂家购进若干部
4、新型手机,以满足市场需求已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完请你帮助商场计算一下如何购买?(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号的手机购买数量不少于6部且不多于8部,请你求出每种型号手机的购买数量二、 数形结合思想引导例题1、在长为m,宽为m的一块草坪上修了一条1m宽的笔直小路,则余下草坪的面积可表示为 ;现为了增加美感,把这条小路改为宽恒为1m的弯曲小路(如图),则此时余下草坪
5、的面积为 。变式练习1:有一个大圆,如以它一条直径上无数个点为圆心,画出无数个紧密相连的小圆,如上图,那么大圆的周长与大圆内部这些无数小圆周长之和相比,那个更长?变式练习2:如右图,已知直角三角形ABC的周长为5米,求四个小直角三角形的周长之和。例题2:(1)如图,ABCD,则A+C= 。 如图,ABCD,则AEC= 。 如图,ABCD,则AEF+C= 。 如图,ABCD,则AEF+G+C= 。(2)如图,ABCD,则AEF+C= 。(3)利用上述结论解决问题:如图已知ABCD,BAE和DCE的平分线相交于F,E=140,求AFC的度数。 图 图 图 图 图变式练习1:已知:ABCD,B70,
6、D40,求BED的度数(如图所示)如图18(2),当1105,2140时,求3的度数观察下图(3)、(4)、(5)、(6) 中1,2,3的关系,写出一个结论变式练习2:如图,已知ABCD,EAF=EAB,ECFECD,试AEC与AFC之间的关系式。变式练习3:已知,ABCD,点M、N分别在AB、CD上,点P是一个动点,连接MP、NP。请探讨P与AMP、CNP之间的关系。 例题3:如图1,点O为直线AB上一点,过O点作射线OC,使AOC:BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使
7、得ON落在射线OB上,此时三角板旋转的角度为_度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在AOC的内部试探究AOM与NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O按15每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分AOC时,求此时三角板绕点O的运动时间t的值变式练习1:已知AOB是一个直角,作射线OC,再分别作AOC和BOC的平分线OD、OE(1)如图1,当BOC=70时,求DOE的度数;(2)如图2,当射线OC在AOB内绕O点旋转时,DOE的大小是否发生变化若变化,说明理由;若不变,求DO
8、E的度数;(3)当射线OC在AOB外绕O点旋转时,画出图形,判断DOE的大小是否发生变化. 若变化,说明理由;若不变,求DOE的度数 (图1) (图2) 变式练习1:如图所示,已知1=2,3=4,C=32,D=28,求P的度数. 变式练习2:已知如图BE、CF分别是ABD、ACD的平分线(1)若BDC=152,BGC=104,求A;(2)若A=54,BGC=110,求BDC 变式练习3:如图,从点O引出6条射线OA、OB、OC、OD、OE、OF,且 (第27题图)(图1) (图2)AOB=100,OF平分BOC,AOE=DOE,EOF=140,则COD的度数为 .例题4(折叠):如图所示,长方
9、形纸条ABCD沿EF折叠后,EFB35,试求DEH与BGH的大小。 变式练习1:如图,矩形ABCD沿AE折叠,使D点落在BC边上的F点处,如果BAF60,则DAE等于= .变式练习2:如图 a,已知长方形纸带,DEF=20,将纸带沿EF折叠成图案b,再沿BF折叠成图案c,则c中的CFE的度数是_。 变式练习3:如图,从点O引出6条射线OA、OB、OC、OD、OE、OF,且AOB=100,OF平分BOC,AOE=DOE,EOF=140,则COD的度数为 . 变式练习4:如图所示,是一张长方形纸条折成的形状,如果1=105,求2的度数。变式练习5:2、探究 家庭练习1:如图,直线AB、CD相交于点
10、O,OE平分AOD,FOC=90,1=40,求2与3的度数。 家庭练习2:如图,由点O引出六条射线OA、OB、OC、OD、OE、OF,且AOB=90,OF平分BOC,OE平分AOD,若EOF=170(包含COD在内),求COD的度数。 家庭练习3:如图,直线AB、CD、EF相交于点O,ABCD,OG平分AOE,FOD=28,求AOG的度数。 例题5;(1)如图,B=C,AE BC,问:AE平分DAB吗?请说明理由。(1)(2) 如图,E在直线DF上,B在直线AC上,若AGB=EHF,C=D,试判断A与F的关系,并说明理由。 变式练习1:如图,AB CD,直线EF分别交AB、CD于E、F,EG平
11、分BEF,如果1=72,则2= 。 变式练习2:如图,两平面镜OM、ON的夹角为,入射光线AB平行于ON入射到OM上,经过两次反射后的出射光线CD平行于OM,则= 。 变式练习3:如图所示,已知ADBC于D,GEBC于E,GE和AB相交于点F,BFE=G求证:AD平分BAC 变式练习4:如图,已知:ABAD,CEAB,FGBD,1=2,求证:ACBD。 例题6、尺规作图例1、如图所示,一辆汽车在直线公路AB上由A向B行驶,M、N分别是位于公路两侧的村庄。(1)设汽车行驶到公路AB上点P位置时,距离村庄M最近;行驶到点Q位置时,距离村庄N最近。请在图中的公路AB上分别画出点P和点Q的位置。(2)
12、当汽车从A出发向B行驶时,在公路AB的哪一段路上距离M、N两村庄都越来越近?在哪一段路上距离村庄N越来越近,而距离村庄M越来越远?(分别用文字表述你的结论)变式练习:已知AB与CD两条公路相交与点P,点E与点F为两所学校,现在要在平面内修建一个水库,使水库到学校E和学校F的距离相等,且到两条公路的距离也相等,请你用尺规作图的方法找到水库应设在什么地方课后作业1、已知有理数a、b、c在数轴上的位置如下图所示,化简.2、已知a、b互为相反数,c、d互为倒数,m的绝对值为2,那么.3、如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数例如:称图中的数1,5,12,22为五边形数,则第7个五边形数是
13、_4、下图是用棋子摆成的“上”字依照此规律,第错误! 嵌入对象无效。个图形需要黑子5 个,白子14 个 第题图5、如图,图(1)是一个正五边形,分别连接这个正五边形各边的中点得到图(2),在分别连接图(2)中小正五边形各边的中点得到图(3):(1)填写下表图形标号(1)(2)(3)正五边形的个数三角形的个数(2)按上面的方法继续下去,第n个图有多少个三角形?(3)当n为多少时,可以分出235个三角形?6、如图,已知AOB=90,BOC=30,OM平分AOC,ON平分BOC.(1)求MON的度数;(2)若(1)中,AOB=,其它条件不变,求MON的度数;(3)若(1)中,BOC=(为锐角),其它
14、条件不变,求MON的度数;(4)从(1)(2)(3)中你能得到什么结论?7、已知:如图所示,点D、E分别在BC、AC上,DEBA,DFCA,EFBC,DF交AB于G,A=60,F=70,求EDC的度数。解:EFBC( ) _=F=70( ) 又DEBA( ) _=A=60( ) 又DFAC( ) FDE=_=60( ) 又BDC是直线(已知) BDC=180( ) 即BDF+FDE+EDC=180 EDC=180-BDF-FDE=180-_-_=_。8、如图,已知:ABAD,CEAB,FGBD,1=2,求证:ACBD。9、某超市购进一批A型电器,原计划每件按进价加价40%标价出售.但是,按这种
15、标价卖出这批A型电器的90%时,为了加快资金周转, 超市决定以打7折(即按标价的70%)的优惠价,把剩余的A型电器全部卖出.(1)剩余的A型电器以打7折的优惠价卖出,这部分是亏损还是盈利?请说明理由; (2)按规定,不论按什么价格出售,卖完这批A型电器必须交税费300元(税费与购进A型电器用的钱一起作为成本),若实际所得纯利润比原计划的纯利润少了15%.问超市购进这批A型电器用了多少钱? 10、某商场为了提高彩电销售人员的积极性,制定了新的工资分配方案.方案规定:每位销售人员的工资总额基本工资+奖励工资.每位销售人员的月销售额定为10000元,在销售定额内,得基本工资200元;超过销售定额,超过部分的销售额按表1所示的相应比例作为奖励工资.(1)已知销售员甲本月分为领到的工资总额为800元,请问甲本月的销售额为多少元?(2)若销售员乙本月共销售A、B两种型号的彩电21台,得到工资1300元,且A型彩电的销售价为每台1000元,B型彩电的销售价为每台1500元,问乙本月的销售额为多少元?乙本月销售A型彩电多少台?表1销售额奖励比例超过0元但不超过5千元部分5%超过0.5万元但不超过1万元部分8%1万元以上的部分10%17宝剑锋从磨砺出,梅花香自苦寒来!