收藏 分销(赏)

三角形各个心的定义及性质.doc

上传人:快乐****生活 文档编号:11326763 上传时间:2025-07-17 格式:DOC 页数:3 大小:25.55KB 下载积分:5 金币
下载 相关 举报
三角形各个心的定义及性质.doc_第1页
第1页 / 共3页
三角形各个心的定义及性质.doc_第2页
第2页 / 共3页


点击查看更多>>
资源描述
三角形的重心是三角形三条中线的交点。 三角形的重心的性质  1.重心到顶点的距离与重心到对边中点的距离之比为2:1。    2.重心和三角形3个顶点组成的3个三角形面积相等。    3.重心到三角形3个顶点距离的平方和最小。    4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3    5.重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。    6.重心是三角形内到三边距离之积最大的点。 三角形的内心是三角形三条角平分线的交点(或内切圆的圆心)。 三角形的内心的性质 1.三角形的三条角平分线交于一点,该点即为三角形的内心    2.三角形的内心到三边的距离相等,都等于内切圆半径r    3.r=2S/(a+b+c)    4.在Rt△ABC中,∠C=90°,r=(a+b-c)/2.    5.∠BOC = 90 °+∠A/2 ∠BOA = 90 °+∠C/2 ∠AOC = 90 °+∠B/2    6.S△=[(a+b+c)r]/2 (r是内切圆半径) 三角形的外心是三角形三条垂直平分线的交点(或三角形外接圆的圆心) 。 三角形的外心的性质 1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心.    2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合。    3.锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重合    4.OA=OB=OC=R    5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA    6.S△ABC=abc/4R 三角形的垂心是三角形三边上的高的交点(通常用H表示)。 三角形的垂心的性质  1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外    2.三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心    3. 垂心O关于三边的对称点,均在△ABC的外接圆上    4.△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AO·OD=BO·OE=CO·OF    5. H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。    6.△ABC,△ABO,△BCO,△ACO的外接圆是等圆。    7.在非直角三角形中,过O的直线交AB、AC所在直线分别于P、Q,则 AB/AP·tanB+ AC/AQ·tanC=tanA+tanB+tanC    8.三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。    9.设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。   10.锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。    11.锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服