资源描述
深圳深圳市福田区彩田学校八年级上册压轴题数学模拟试卷及答案
一、压轴题
1.已知ABCD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F.
(1)若点E的位置如图1所示.
①若∠ABE=60°,∠CDE=80°,则∠F= °;
②探究∠F与∠BED的数量关系并证明你的结论;
(2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是 .
(3)若点E的位置如图3所示,∠CDE 为锐角,且,设∠F=α,则α的取值范围为 .
解析:(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)
【解析】
【分析】
(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;
②分别过E、F作EN//AB,FM//AB,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;
(2)根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED与∠BFD之间的数量关系;
(3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得.
【详解】
(1)①过F作FG//AB,如图:
∵AB∥CD,FG∥AB,
∴CD∥FG,
∴∠ABF=∠BFG,∠CDF=∠DFG,
∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∵DF平分∠CDE,
∴∠CDE=2∠CDF,
∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,
∴∠ABF+∠CDF=70,
∴∠DFB=∠ABF+∠CDF=70,
故答案为:70;
②∠F=∠BED,
理由是:分别过E、F作EN//AB,FM//AB,
∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,
∴∠BED=∠ABE+∠CDE,
∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,
∴∠ABE=2∠ABF,∠CDE=2∠CDF,
即∠BED=2(∠ABF+∠CDF);
同理,由FM//AB,可得∠F=∠ABF+∠CDF,
∴∠F=∠BED;
(3)2∠F+∠BED=360°.
如图,过点E作EG∥AB,
则∠BEG+∠ABE=180°,
∵AB∥CD,EG∥AB,
∴CD∥EG,
∴∠DEG+∠CDE=180°,
∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),
即∠BED=360°-(∠ABE+∠CDE),
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∵DF平分∠CDE,
∴∠CDE=2∠CDF,
∠BED=360°-2(∠ABF+∠CDF),
由①得:∠BFD=∠ABF+∠CDF,
∴∠BED=360°-2∠BFD,
即2∠F+∠BED=360°;
(3)∵,∠F=α,
∴,
解得:,
如图,
∵∠CDE 为锐角,DF是∠CDE的角平分线,
∴∠CDH=∠DHB,
∴∠F∠DHB,即,
∴,
故答案为:.
【点睛】
本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.
2.探究发现:如图①,在中,内角的平分线与外角的平分线相交于点.
(1)若,则 ;
若,则 ;
(2)由此猜想:与的关系为 (不必说明理由).
拓展延伸:如图②,四边形的内角与外角的平分线相交于点,.
(3)若,,求的度数,由此猜想与,之间的关系,并说明理由.
解析:(1)40°25°;(2)(或)(3)=
【解析】
【分析】
(1)先根据两角平分线写出对应的等式关系,再分别写出两个三角形内角和的等式关系,最后联立两等式化解,将的角度带入即可求解;
(2)由(1)可得,即可求解;
(3)在与的平分线相交于点,可知,又因为,两直线平行内错角相等,得出,再根据三角形一外角等于不相邻的两个内角的和,得出,再由四边形的内角和定理得出,最后在中:,代入整理即可得出结论.
【详解】
解:(1)由题可知:BE为的角平分线,CE为的角平分线,
=2=2,=2,
,
三角形内角和等于,
在中:,
即:,
①,
在中:,
即:,
②,
综上所述联立①②,由①-②×2可得 :,
,
,
,
当,则;
当,则;
故答案为,;
(2)由(1)知:(或);
(3)∵与的平分线相交于点,
∴, ,
又∵,
∴(两直线平行,内错角相等),
∵是的一个外角,
∴(三角形一外角等于不相邻的两个内角的和),
在四边形中,四边形内角和为,, ,
∴,
∴①,
∴,
即,
在中:,,
由上可得:,
②,
又∵,
∴,
,
,
由①②可得,,
,
.
【点睛】
本题主要考查了三角形的外角性质的应用和角平分线的定义,能正确运用性质进行推理和计算是解此题的关键,注意三角形的一个外角等于和它不相邻的两个内角的和.
3.阅读材料并完成习题:
在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.
解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2, ∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.
(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2.
(2)请你用上面学到的方法完成下面的习题.
如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.
解析:(1)2;(2)4
【解析】
【分析】
(1)根据题意可直接求等腰直角三角形EAC的面积即可;
(2)延长MN到K,使NK=GH,连接FK、FH、FM,由(1)易证,则有FK=FH,因为HM=GH+MN易证,故可求解.
【详解】
(1)由题意知,
故答案为2;
(2)延长MN到K,使NK=GH,连接FK、FH、FM,如图所示:
FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,
∠FNK=∠FGH=90°,,
FH=FK,
又FM=FM,HM=KM=MN+GH=MN+NK,
,
MK=FN=2cm,
.
【点睛】
本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用.
4.在△ABC中,已知∠A=α.
(1)如图1,∠ABC、∠ACB的平分线相交于点D.求∠BDC的大小(用含α的代数式表示);
(2)如图2,若∠ABC的平分线与∠ACE的平分线交于点F,求∠BFC的大小(用含α的代数式表示);
(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的平分线与∠GCB的平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).
解析:(1)∠BDC=90°+;(2)∠BFC=;(3)∠BMC=90°+.
【解析】
【分析】
(1)由三角形内角和可求∠ABC+∠ACB=180°﹣α,由角平分线的性质可求∠DBC+∠BCD=(∠ABC+∠ACB)=90°﹣,由三角形的内角和定理可求解;
(2)由角平分线的性质可得∠FBC=∠ABC,∠FCE=∠ACE,由三角形的外角性质可求解;
(3)由折叠的性质可得∠G=∠BFC=,方法同(1)可求∠BMC=90°+,即可求解.
【详解】
解:(1)∵∠A=α,
∴∠ABC+∠ACB=180°﹣α,
∵BD平分∠ABC,CD平分∠ACB,
∴∠DBC=∠ABC,∠BCD=∠ACB,
∴∠DBC+∠BCD=(∠ABC+∠ACB)=90°﹣,
∴∠BDC=180°﹣(∠DBC+∠BCD)=90°+;
(2)∵∠ABC的平分线与∠ACE的平分线交于点F,
∴∠FBC=∠ABC,∠FCE=∠ACE,
∵∠ACE=∠A+∠ABC,∠FCE=∠BFC+∠FBC,
∴∠BFC=∠A=;
(3)∵∠GBC的平分线与∠GCB的平分线交于点M,
∴方法同(1)可得∠BMC=90°+,
∵将△FBC以直线BC为对称轴翻折得到△GBC,
∴∠G=∠BFC=,
∴∠BMC=90°+.
【点睛】
此题考查三角形的内角和定理,三角形的外角等于与它不相邻的两个内角的和,角平分线的性质定理,折叠的性质.
5.小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形中,点在上,点在的延长线上,且,试确定线段与的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:
(1)取特殊情况,探索讨论:当点为的中点时,如图(2),确定线段与的大小关系,请你写出结论:_____(填“”,“”或“”),并说明理由.
(2)特例启发,解答题目:
解:题目中,与的大小关系是:_____(填“”,“”或“”).理由如下:
如图(3),过点作EF∥BC,交于点.(请你将剩余的解答过程完成)
(3)拓展结论,设计新题:在等边三角形中,点在直线上,点在直线上,且,若△的边长为,,求的长(请你画出图形,并直接写出结果).
解析:(1),理由详见解析;(2),理由详见解析;(3)3或1
【解析】
【分析】
(1)根据等边三角形的性质、三线合一的性质证明即可;
(2)根据等边三角形的性质,证明△≌△即可;
(3)注意区分当点在的延长线上时和当点在的延长线上时两种情况,不要遗漏.
【详解】
解:(1),理由如下:
,
∵△是等边三角形,,
点为的中点,
,,,
,
,
;
故答案为:;
(2),理由如下:
如图3:
∵△为等边三角形,且EF∥BC,
,,;
;
,,,
在△与△中,
,
∴△≌△(AAS),
,
∴△为等边三角形,
,
.
(3)①如图4,当点在的延长线上时,过点作EF∥BC,交的延长线于点:
则,;
,;
∵△为等边三角形,
,,,
;而,
,;
在△和△中,
,
∴△≌△(AAS),;
∵△为等边三角形,,,
;
②如图5,当点在的延长线上时,过点作EF∥BC,交的延长线于点:
类似上述解法,同理可证:,,
.
【点睛】
本题考查等边三角形的性质、全等三角形的判定和性质.熟练掌握等边三角形的性质,构造合适的全等三角形是解题的关键.
6.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.
(1)如图,当点D在BC延长线上移动时,若∠BAC=40°,则∠ACE= ,∠DCE= ,BC、DC、CE之间的数量关系为 ;
(2)设∠BAC=α,∠DCE=β.
①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;
②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.
(3)当CE∥AB时,若△ABD中最小角为15°,试探究∠ACB的度数(直接写出结果,无需写出求解过程).
解析:(1)70°,40°,BC+DC=CE;(2)①α=β;②当点D在BC上移动时,α=β或α+β=180°;(3)∠ACB=60°.
【解析】
【分析】
(1)证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质和全等三角形的性质求出即可;
(2)①证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可;
②分三种情况:(Ⅰ)当D在线段BC上时,证明△ABD≌△ACE(SAS),则∠ADB=∠AEC,∠ABC=∠ACE,推出∠DAE+∠DCE=180°,即α+β=180°;
(Ⅱ)当点D在线段BC反向延长线上时,α=β,同理可证明△ABD≌△ACE(SAS),则∠ABD=∠ACE,推出∠BAC=∠DCE,即α=β;
(Ⅲ)当点D在线段BC的延长线上时,由①得α=β;
(3)当点D在线段BC的延长线上或在线段BC反向延长线上移动时,α=β,由CE∥AB,得∠ABC=∠DCE,推出∠ABC=∠BAC,易证∠ABC=∠ACB=∠BAC,则△ABC是等边三角形,得出∠ACB=60°;当D在线段BC上时,α+β=180°,由CE∥AB,得∠ABC+∠DCE=180°,推出∠ABC=∠BAC,易证∠ABC=∠ACB=∠BAC,则△ABC是等边三角形,得出∠ACB=60°.
【详解】
(1)如图1所示:
∵∠DAE=∠BAC,
∴∠DAE+∠CAD=∠BAC+∠CAD,
∴∠BAD=∠CAE.
在△BAD和△CAE中,,
∴△BAD≌△CAE(SAS),
∴∠ACE=∠B(180°﹣40°)=70°,BD=CE,
∴BC+DC=CE.
∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,
∴∠BAC=∠DCE.
∵∠BAC=40°,
∴∠DCE=40°.
故答案为:70°,40°,BC+DC=CE;
(2)①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β.理由如下:
∵∠DAE=∠BAC,
∴∠DAE+∠CAD=∠BAC+∠CAD,
∴∠BAD=∠CAE.
在△BAD和△CAE中,,
∴△BAD≌△CAE(SAS),
∴∠B=∠ACE.
∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,
∴∠BAC=∠DCE.
∵∠BAC=α,∠DCE=β,
∴α=β;
②分三种情况:
(Ⅰ)当D在线段BC上时,α+β=180°,如图2所示.理由如下:
同理可证明:△ABD≌△ACE(SAS),
∴∠ADB=∠AEC,∠ABC=∠ACE.
∵∠ADC+∠ADB=180°,
∴∠ADC+∠AEC=180°,
∴∠DAE+∠DCE=180°.
∵∠BAC=∠DAE=α,∠DCE=β,
∴α+β=180°;
(Ⅱ)当点D在线段BC反向延长线上时,α=β,如图3所示.理由如下:
同理可证明:△ABD≌△ACE(SAS),
∴∠ABD=∠ACE.
∵∠ACE=∠ACD+∠DCE,∠ABD=∠ACD+∠BAC,
∴∠ACD+∠DCE=∠ACD+∠BAC,
∴∠BAC=∠DCE.
∵∠BAC=α,∠DCE=β,
∴α=β;
(Ⅲ)当点D在线段BC的延长线上时,如图1所示,α=β;
综上所述:当点D在BC上移动时,α=β或α+β=180°;
(3)∠ACB=60°.理由如下:
∵当点D在线段BC的延长线上或在线段BC反向延长线上移动时,α=β,
即∠BAC=∠DCE.
∵CE∥AB,
∴∠ABC=∠DCE,
∴∠ABC=∠BAC.
∵AB=AC,
∴∠ABC=∠ACB=∠BAC,
∴△ABC是等边三角形,
∴∠ACB=60°;
∵当D在线段BC上时,α+β=180°,
即∠BAC+∠DCE=180°.
∵CE∥AB,
∴∠ABC+∠DCE=180°,
∴∠ABC=∠BAC.
∵AB=AC,
∴∠ABC=∠ACB=∠BAC,
∴△ABC是等边三角形,
∴∠ACB=60°;
综上所述:当CE∥AB时,若△ABD中最小角为15°,∠ACB的度数为60°.
【点睛】
本题是三角形综合题目,考查了全等三角形的判定与性质、等腰三角形的性质、等边三角形的判定与性质、平行线的性质、三角形的外角性质和多边形内角和等知识.本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.
7.在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:
(1)非等边的等腰三角形有________条对称轴,非正方形的长方形有________条对称轴,等边三角形有___________条对称轴;
(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图1-2和图1-3都可以看作由图1-1修改得到的,仿照类似的修改方式,请你在图1-4和图1-5中,分别修改图1-2和图1-3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;
(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形;
(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.
解析:(1)1,2,3;(2)答案见解析;(3)答案见解析;(4)答案见解析.
【解析】
【分析】
(1)根据等腰三角形的性质、矩形的性质以及等边三角形的性质进行判断即可;
(2)中图1-2和图1-3都可以看作由图1-1修改得到的,在图1-4和图1-5中,分别仿照类似的修改方式进行画图即可;
(3)长方形具有两条对称轴,在长方形的右侧补出与左侧一样的图形,即可构造出一个恰好有2条对称轴的凸六边形;
(4)在等边三角形的基础上加以修改,即可得到恰好有3条对称轴的凸六边形.
【详解】
解:(1)非等边的等腰三角形有1条对称轴,非正方形的长方形有2条对称轴,等边三角形有3条对称轴,
故答案为1,2,3;
(2)恰好有1条对称轴的凸五边形如图中所示.
(3)恰好有2条对称轴的凸六边形如图所示.
(4)恰好有3条对称轴的凸六边形如图所示.
8.问题背景:(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.
拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC.请写出DE、BD、CE三条线段的数量关系.(不需要证明)
实际应用:(3)如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A的坐标为(-6,3),请直接写出B点的坐标.
解析:(1)证明见解析;(2)DE=BD+CE;(3)B(1,4)
【解析】
【分析】
(1)证明△ABD≌△CAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;
(2)根据三角形内角和定理、平角的定义证明∠ABD=∠CAE,证明△ABD≌△CAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;
(3)根据△AEC≌△CFB,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答.
【详解】
(1)证明:∵BD⊥直线m,CE⊥直线m,
∴∠ADB=∠CEA=90°
∵∠BAC=90°
∴∠BAD+∠CAE=90°
∵∠BAD+∠ABD=90°
∴∠CAE=∠ABD
∵在△ADB和△CEA中
∴△ADB≌△CEA(AAS)
∴AE=BD,AD=CE
∴DE=AE+AD=BD+CE
即:DE=BD+CE
(2)解:数量关系:DE=BD+CE
理由如下:在△ABD中,∠ABD=180°-∠ADB-∠BAD,
∵∠CAE=180°-∠BAC-∠BAD,∠BDA=∠AEC,
∴∠ABD=∠CAE,
在△ABD和△CAE中,
∴△ABD≌△CAE(AAS)
∴AE=BD,AD=CE,
∴DE=AD+AE=BD+CE;
(3)解:如图,作AE⊥x轴于E,BF⊥x轴于F,
由(1)可知,△AEC≌△CFB,
∴CF=AE=3,BF=CE=OE-OC=4,
∴OF=CF-OC=1,
∴点B的坐标为B(1,4).
【点睛】
本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.
9.如图1.在△ABC中,∠ACB=90°,AC=BC=10,直线DE经过点C,过点A,B分别作AD⊥DE,BE⊥DE,垂足分别为点D和E,AD=8,BE=6.
(1)①求证:△ADC≌△CEB;②求DE的长;
(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N以8个单位长度/秒的速度从点B出发沿着线BC—CA运动,到终点A.M,N两点同时出发,运动时间为t秒(t>0),当点N到达终点时,两点同时停止运动,过点M作PM⊥DE于点P,过点N作QN⊥DE于点Q;
①当点N在线段CA上时,用含有t的代数式表示线段CN的长度;
②当t为何值时,点M与点N重合;
③当△PCM与△QCN全等时,则t= .
解析:(1)①证明见解析;②DE=14;(2)①8t-10;②t=2;③t=
【解析】
【分析】
(1)①先证明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;
②由全等三角形的性质得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;
(2)①当点N在线段CA上时,根据CN=CN−BC即可得出答案;
②点M与点N重合时,CM=CN,即3t=8t−10,解得t=2即可;
③分两种情况:当点N在线段BC上时,△PCM≌△QNC,则CM=CN,得3t=10−8t,解得t=1011;当点N在线段CA上时,△PCM≌△QCN,则3t=8t−10,解得t=2;即可得出答案.
【详解】
(1)①证明:∵AD⊥DE,BE⊥DE,
∴∠ADC=∠CEB=90°,
∵∠ACB=90°,
∴∠DAC+∠DCA=∠DCA+∠BCE=90°,
∴∠DAC=∠ECB,
在△ADC和△CEB中,
∴△ADC≌△CEB(AAS);
②由①得:△ADC≌△CEB,
∴AD=CE=8,CD=BE=6,
∴DE=CD+CE=6+8=14;
(2)解:①当点N在线段CA上时,如图3所示:
CN=CN−BC=8t−10;
②点M与点N重合时,CM=CN,
即3t=8t−10,
解得:t=2,
∴当t为2秒时,点M与点N重合;
③分两种情况:
当点N在线段BC上时,△PCM≌△QNC,
∴CM=CN,
∴3t=10−8t,
解得:t=;
当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,
则3t=8t−10,
解得:t=2;
综上所述,当△PCM与△QCN全等时,则t等于s或2s,
故答案为:s或2s.
【点睛】
本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.
10.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.
①请直接写出∠AEB的度数为_____;
②试猜想线段AD与线段BE有怎样的数量关系,并证明;
(2)拓展探究:图2, △ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E在同-直线上, CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数线段CM、AE、BE之间的数量关系,并说明理由.
解析:(1)①60°;②AD=BE.证明见解析;(2)∠AEB=90°;AE=2CM+BE;理由见解析.
【解析】
【分析】
(1)①由条件△ACB和△DCE均为等边三角形,易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.②由△ACD≌△BCE,可得AD=BE;
(2)首先根据△ACB和△DCE均为等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE;然后根据全等三角形的判定方法,判断出△ACD≌△BCE,即可判断出BE=AD,∠BEC=∠ADC,进而判断出∠AEB的度数为90°;根据DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM.
【详解】
(1)①∵∠ACB=∠DCE,∠DCB=∠DCB,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
,
∴△ACD≌△BCE,
∴AD=BE,∠CEB=∠ADC=180°−∠CDE=120°,
∴∠AEB=∠CEB−∠CED=60°;
②AD=BE.
证明:∵△ACD≌△BCE,
∴AD=BE.
(2)∠AEB=90°;AE=2CM+BE;理由如下:
∵△ACB和△DCE均为等腰直角三角形,∠ACB =∠DCE= 90°,
∴AC = BC, CD = CE, ∠ACB =∠DCB =∠DCE-∠DCB, 即∠ACD = ∠BCE,
∴△ACD≌△BCE,
∴AD = BE,∠BEC = ∠ADC=135°.
∴∠AEB =∠BEC-∠CED =135°- 45°= 90°.
在等腰直角△DCE中,CM为斜边DE上的高,
∴CM =DM= ME,∴DE = 2CM.
∴AE = DE+AD=2CM+BE.
【点睛】
本题考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的判定与性质等知识,解题时需注意运用已有的知识和经验解决相似问题.
11.在中,若存在一个内角角度,是另外一个内角角度的倍(为大于1的正整数),则称为倍角三角形.例如,在中,,,,可知,所以为3倍角三角形.
(1)在中,,,则为________倍角三角形;
(2)若是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的,求的最小内角.
(3)若是2倍角三角形,且,请直接写出的最小内角的取值范围.
解析:(1)4;(2)的最小内角为15°或9°或;(3)30°<x<45°.
【解析】
【分析】
(1)根据三角形内角和定理求出∠C的度数,再根据倍角三角形的定义判断即可得到答案;
(2) 根据△DEF是3倍角三角形,必定有一个内角是另一个内角的3倍,然后根据这两个角之间的关系,分情况进行解答即可得到答案;
(3) 可设未知数表示2倍角三角形的各个内角,然后列不等式组确定最小内角的取值范围.
【详解】
解:(1)∵在中,,,
∴∠C=180°-55°-25°=100°,
∴∠C=4∠B,
故为4倍角三角形;
(2) 设其中一个内角为x°,3倍角为3x°,则另外一个内角为:
①当小的内角的度数是3倍内角的余角的度数的时,
即:x=(90°-3x),
解得:x=15°,
②3倍内角的度数是小内角的余角的度数的时,
即:3x=(90°-x),解得:x=9°,
③当时,
解得:,
此时:=,因此为最小内角,
因此,△DEF的最小内角是9°或15°或.
(3) 设最小内角为x,则2倍内角为2x,第三个内角为(180°-3x),由题意得:
2x<90°且180°-3x<90°,
∴30°<x<45°,
答:△MNP的最小内角的取值范围是30°<x<45°.
12.阅读并填空:
如图,是等腰三角形,,是边延长线上的一点,在边上且联接交于,如果,那么,为什么?
解:过点作交于
所以(两直线平行,同位角相等)
(________)
在与中
所以,(________)
所以(________)
因为(已知)
所以(________)
所以(等量代换)
所以(________)
所以
解析:见解析
【解析】
【分析】
先根据平行线的性质,得到角的关系,然后证明,写出证明过程和依据即可.
【详解】
解:过点作交于,
∴(两直线平行,同位角相等),
∴(两直线平行,内错角相等),
在与中
,
∴,()
∴(全等三角形对应边相等)
∵(已知)
∴(等边对等角)
∴(等量代换)
∴(等角对等边)
∴;
【点睛】
本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.
13.探究:如图①,在△ABC中,∠ACB=90°,CD⊥AB于点D,若∠B=30°,则∠ACD的度数是 度;
拓展:如图②,∠MCN=90°,射线CP在∠MCN的内部,点A、B分别在CM、CN上,分别过点A、B作AD⊥CP、BE⊥CP,垂足分别为D、E,若∠CBE=70°,求∠CAD的度数;
应用:如图③,点A、B分别在∠MCN的边CM、CN上,射线CP在∠MCN的内部,点D、E在射线CP上,连接AD、BE,若∠ADP=∠BEP=60°,则∠CAD+∠CBE+∠ACB= 度.
解析:探究:30;(2)拓展:20°;(3)应用:120
【解析】
【分析】
(1)利用直角三角形的性质依次求出∠A,∠ACD即可;
(2)利用直角三角形的性质直接计算得出即可;
(3)利用三角形的外角的性质得出结论,直接转化即可得出结论.
【详解】
(1)在△ABC中,∠ACB=90°,∠B=30°,
∴∠A=60°,
∵CD⊥AB,
∴∠ADC=90°,
∴∠ACD=90°﹣∠A=30°;
故答案为:30,
(2)∵BE⊥CP,
∴∠BEC=90°,
∵∠CBE=70°,
∴∠BCE=90°﹣∠CBE=20°,
∵∠ACB=90°,
∴∠ACD=90°﹣∠BCE=70°,
∵AD⊥CP,
∴∠CAD=90°﹣∠ACD=20°;
(3)∵∠ADP是△ACD的外角,
∴∠ADP=∠ACD+∠CAD=60°,
同理,∠BEP=∠BCE+∠CBE=60°,
∴∠CAD+∠CBE+∠ACB=∠CAD+∠CBE+∠ACD+∠BCE=(∠CAD+∠ACD)+(∠CBE+∠BCE)=120°,
故答案为120.
【点睛】
此题是三角形的综合题,主要考查了直角三角形的性质,三角形的外角的性质,垂直的定义,解本题的关键是充分利用直角三角形的性质:两锐角互余,是一道比较简单的综合题.
14.在中,,是直线上一点,在直线上,且.
(1)如图1,当D在上,在延长线上时,求证:;
(2)如图2,当为等边三角形时,是的延长线上一点,在上时,作,求证:;
(3)在(2)的条件下,的平分线交于点,连,过点作于点,当,时,求的长度.
解析:(1)见解析;(2)见解析;(3)3
【解析】
【分析】
(1)根据等腰三角形的性质和外角的性质即可得到结论;
(2)过E作EF∥AC交AB于F,根据已知条件得到△ABC是等边三角形,推出△BEF是等边三角形,得到BE=EF,∠BFE=60°,根据全等三角形的性质即可得到结论;
(3)连接AF,证明△ABF≌△CBF,得AF=CF,再证明DH=AH=CF=3.
【详解】
解:(1)∵AB=AC,
∴∠ABC=∠ACB,
∵DE=DC,
∴∠E=∠DCE,
∴∠ABC-∠E=∠ACB-∠DCB,
即∠EDB=∠ACD;
(2)∵△ABC是等边三角形,
∴∠B=60°,
∴△BEF是等边三角形,
∴BE=EF,∠BFE=60°,
∴∠DFE=120°,
∴∠DFE=∠CAD,
在△DEF与△CAD中,
,
∴△DEF≌△CAD(AAS),
∴EF=AD,
∴AD=BE;
(3)连接AF,如图3所示:
∵DE=DC,∠EDC=30°,
∴∠DEC=∠DCE=75°,
∴∠ACF=75°-60°=15°,
∵BF平分∠ABC,
∴∠ABF=∠CBF,
在△ABF和△CBF中,
,
△ABF≌△CBF(SAS),
∴AF=CF,
∴∠FAC=∠ACF=15°,
∴∠AFH=15°+15°=30°,
∵AH⊥CD,
∴AH=AF=CF=3,
∵∠DEC=∠ABC+∠BDE,
∴∠BDE=75°-60°=15°,
∴∠ADH=15°+30°=45°,
∴∠DAH=∠ADH=45°,
∴DH=AH=3.
【点睛】
本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.
15.如图,在平面直角坐标系中,,,,点、在轴上且关于轴对称.
(1)求点的坐标;
(2)动点以每秒2个单位长度的速度从点出发沿轴正方向向终点运动,设运动时间为秒,点到直线的距离的长为,求与的关系式;
(3)在(2)的条件下,当点到的距离为时,连接,作的平分线分别交、于点、,求的长.
解析:(1)C(4,0);(2);(3).
【解析】
【分析】
(1)根据对称的性质知为等边三角形,利用直角三角形中30度角的性质即可求得答案;
(2)利用面积法可求得,再利用坐标系中点的特征即可求得答案;
(3)利用(2)的结论求得,利用角平分线的性质证得,求得,利用面积法求得,再利用直角三角形中30度角的性质即可求得答案.
【详解】
(1)∵点、关于轴对称,
∴,
∴,
∵,
∴为等边三角形,
∴,
∴,
∴点C的坐标为:;
(2)连接,
∵,
∴,
∵,
∴,
∵,
∴,
∵,
∴,
即:;
(3)∵点到的距离为,
∴,
∴,
∴,
延长交于点,过点作轴于点,连接、,
∵为的角平分线,为等边三角形,
∴,,
∵,,
∴,
∴,
设,
在中,,
∴,
∵,
∴,
∴,
∴,
∴,
∵,,
∴,
∵,
∴,
在中,,,
∴,
∴,,
∴,
∴.
【点睛】
本题是三角形综合题,涉及的知识有:含30度直角三角形的性质,全等三角形的判定与性质,外角性质,角平分线的性质,等边三角形的判定和性质,坐标与图形性质,熟练掌握性质及定理、灵活运用面积法求线段的长是解本题的关键.
二、选择题
16.已知max表示取三个数中最大的那个数,例如:当x=9时,max=81.当max时,则x的值为( )
A. B. C. D.
解析:C
【解析】
【分析】
利用max的定义分情况讨论即可求解.
【详解】
解:当max时,x≥0
①=,解得:x=,此时>x>x2,符合题意;
②x2=,解得:x=;此时>x>x2,不合题意;
③x=,>x>x2,不合题意;
故只有x=时,max.
故选:C.
【点睛】
此题主要考查了新定义,正确理解题意分类讨论是解题关键.
17.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )
A. B.
C. D.
解析:B
【解析】
【分析】
由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.
【详解】
解:A、5+3
展开阅读全文