收藏 分销(赏)

初中数学北师大版七年级上册第4章 基本平面图形测试卷(3).doc

上传人:鱼** 文档编号:11252092 上传时间:2025-07-10 格式:DOC 页数:38 大小:782.59KB 下载积分:3 金币
下载 相关 举报
初中数学北师大版七年级上册第4章 基本平面图形测试卷(3).doc_第1页
第1页 / 共38页
初中数学北师大版七年级上册第4章 基本平面图形测试卷(3).doc_第2页
第2页 / 共38页


点击查看更多>>
资源描述
《第四章 基本平面图形》章末测试卷 一、选择题(共11小题) 1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是(  ) A.同位角相等,两直线平行 B.内错角相等,两直线平行 C.两直线平行,同位角相等 D.两直线平行,内错角相等 2.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是(  ) A. B. C. D. 3.如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是(  ) A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC 4.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(6a,2b﹣1),则a和b的数量关系为(  ) A.6a﹣2b=1 B.6a+2b=1 C.6a﹣b=1 D.6a+b=1 5.如图,用尺规作图:“过点C作CN∥OA”,其作图依据是(  ) A.同位角相等,两直线平行 B.内错角相等,两直线平行 C.同旁内角相等,两直线平行 D.同旁内角互补,两直线平行 6.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是(  ) A.①②③ B.①②④ C.①③④ D.②③④ 7.如图,分别以线段AC的两个端点A,C为圆心,大于AC的长为半径画弧,两弧相交于B,D两点,连接BD,AB,BC,CD,DA,以下结论: ①BD垂直平分AC; ②AC平分∠BAD; ③AC=BD; ④四边形ABCD是中心对称图形. 其中正确的有(  ) A.①②③ B.①③④ C.①②④ D.②③④ 8.观察图中尺规作图痕迹,下列结论错误的是(  ) A.PQ为∠APB的平分线 B.PA=PB C.点A、B到PQ的距离不相等 D.∠APQ=∠BPQ 9.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是(  ) 作法: ①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E; ②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C; ③画射线OC,射线OC就是∠AOB的角平分线. A.ASA B.SAS C.SSS D.AAS 10.如图,以等腰直角△ABC两锐角顶点A、B为圆心作等圆,⊙A与⊙B恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为(  ) A. B. C. D. 11.如图,AB,CD是⊙O的两条互相垂直的直径,点O1,O2,O3,O4分别是OA、OB、OC、OD的中点,若⊙O的半径为2,则阴影部分的面积为(  ) A.8 B.4 C.4π+4 D.4π﹣4 二、填空题(共14小题) 12.阅读下面材料: 在数学课上,老师提出如下问题: 小芸的作法如下: 老师说:“小芸的作法正确.” 请回答:小芸的作图依据是  . 13.如图,在△ABC中,按以下步骤作图: ①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点; ②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为  . 14.如图,△ABC的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点B逆时针旋转到△A′BC′的位置,且点A′、C′仍落在格点上,则图中阴影部分的面积约是  .(π≈3.14,结果精确到0.1) 15.如图,在△ABC中,AC=BC,∠B=70°,分别以点A、C为圆心,大于AC的长为半径作弧,两弧相交于点M、N,作直线MN,分别交AC、BC于点D、E,连结AE,则∠AED的度数是  °. 16.如图,Rt△ABC中,∠C=90°,AC=8,BC=6,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为  . 17.如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是  .(结果保留π) 18.如图,以BC为直径的⊙O与△ABC的另两边分别相交于点D、E.若∠A=60°,BC=4,则图中阴影部分的面积为  .(结果保留π) 19.如图,AB是⊙O的直径,弦AC=2,∠ABC=30°,则图中阴影部分的面积是  . 20.如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当≤r<2时,S的取值范围是  . 21.如图,三角形ABC是边长为1的正三角形,与所对的圆心角均为120°,则图中阴影部分的面积为  . 22.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为  (结果保留根号). 23.如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为  . 24.如图,在△ABC中,∠BAC=90°,AB=5cm,AC=2cm,将△ABC绕顶点C按顺时针方向旋转45°至△A1B1C的位置,则线段AB扫过区域(图中的阴影部分)的面积为  cm2. 25.如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为  . 三、解答题(共5小题) 26.根据图中尺规作图的痕迹,先判断得出结论: OM平分∠BOA ,然后证明你的结论(不要求写已知、求证) 27.如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E. (1)求证:AB=AE; (2)若∠A=100°,求∠EBC的度数. 28.如图,△ABC是等边三角形,D是BC的中点. (1)作图: ①过B作AC的平行线BH; ②过D作BH的垂线,分别交AC,BH,AB的延长线于E,F,G. (2)在图中找出一对全等的三角形,并证明你的结论. 29.如图,在△ABC中,∠C=60°,∠A=40°. (1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明); (2)求证:BD平分∠CBA. 30.如图,BD是矩形ABCD的一条对角线. (1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法); (2)求证:DE=BF. 参考答案 一、选择题(共11小题) 1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是(  ) A.同位角相等,两直线平行 B.内错角相等,两直线平行 C.两直线平行,同位角相等 D.两直线平行,内错角相等 【考点】作图—基本作图;平行线的判定. 【分析】由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行. 【解答】解:∵∠DPF=∠BAF, ∴AB∥PD(同位角相等,两直线平行). 故选:A. 【点评】此题主要考查了基本作图与平行线的判定,正确理解题目的含义是解决本题的关键.   2.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是(  ) A. B. C. D. 【考点】作图—基本作图. 【分析】A、根据作法无法判定PQ⊥l; B、以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断; C、根据直径所对的圆周角等于90°作出判断; D、根据全等三角形的判定和性质即可作出判断. 【解答】解:根据分析可知, 选项B、C、D都能够得到PQ⊥l于点Q;选项A不能够得到PQ⊥l于点Q. 故选:A. 【点评】此题主要考查了过直线外以及过直线上一点作已知直线的垂线,熟练掌握基本作图方法是解题关键.   3.如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是(  ) A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC 【考点】作图—基本作图;线段垂直平分线的性质;直角三角形斜边上的中线. 【分析】由题意可知:MN为AB的垂直平分线,可以得出AD=BD;CD为直角三角形ABC斜边上的中线,得出CD=BD;利用三角形的内角和得出∠A=∠BED;因为∠A≠60°,得不出AC=AD,无法得出EC=ED,则∠ECD=∠EDC不成立;由此选择答案即可. 【解答】解:∵MN为AB的垂直平分线, ∴AD=BD,∠BDE=90°; ∵∠ACB=90°, ∴CD=BD; ∵∠A+∠B=∠B+∠BED=90°, ∴∠A=∠BED; ∵∠A≠60°,AC≠AD, ∴EC≠ED, ∴∠ECD≠∠EDC. 故选:D. 【点评】此题考查了线段垂直平分线的性质以及直角三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.   4.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(6a,2b﹣1),则a和b的数量关系为(  ) A.6a﹣2b=1 B.6a+2b=1 C.6a﹣b=1 D.6a+b=1 【考点】作图—基本作图;坐标与图形性质. 【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号可得6a+2b﹣1=0,然后再整理可得答案. 【解答】解:根据作图方法可得点P在第二象限角平分线上;点P到x轴、y轴的距离相等;点P的横纵坐标互为相反数, 则P点横纵坐标的和为0, 故6a+2b﹣1=0(或﹣6a=2b﹣1), 整理得:6a+2b=1, 故选B. 【点评】此题主要考查了基本作图﹣角平分线的做法以及坐标与图形的性质:点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.   5.如图,用尺规作图:“过点C作CN∥OA”,其作图依据是(  ) A.同位角相等,两直线平行 B.内错角相等,两直线平行 C.同旁内角相等,两直线平行 D.同旁内角互补,两直线平行 【考点】作图—基本作图;平行线的判定. 【分析】根据两直线平行的判定方法得出其作图依据即可. 【解答】解:如图所示:“过点C作CN∥OA”,其作图依据是:作出∠NCO=∠O,则CN∥AO, 故作图依据是:内错角相等,两直线平行. 故选:B. 【点评】此题主要考查了基本作图以及平行线判定,正确掌握作图基本原理是解题关键.   6.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是(  ) A.①②③ B.①②④ C.①③④ D.②③④ 【考点】作图—基本作图;线段垂直平分线的性质. 【专题】几何图形问题. 【分析】根据作图过程得到PB=PC,然后利用D为BC的中点,得到PD垂直平分BC,从而利用垂直平分线的性质对各选项进行判断即可. 【解答】解:根据作图过程可知:PB=CP, ∵D为BC的中点, ∴PD垂直平分BC, ∴①ED⊥BC正确; ∵∠ABC=90°, ∴PD∥AB, ∴E为AC的中点, ∴EC=EA, ∵EB=EC, ∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确, 故正确的有①②④, 故选:B. 【点评】本题考查了基本作图的知识,解题的关键是了解如何作已知线段的垂直平分线,难度中等.   7.如图,分别以线段AC的两个端点A,C为圆心,大于AC的长为半径画弧,两弧相交于B,D两点,连接BD,AB,BC,CD,DA,以下结论: ①BD垂直平分AC; ②AC平分∠BAD; ③AC=BD; ④四边形ABCD是中心对称图形. 其中正确的有(  ) A.①②③ B.①③④ C.①②④ D.②③④ 【考点】作图—基本作图;线段垂直平分线的性质;中心对称图形. 【分析】根据线段垂直平分线的作法及中心对称图形的性质进行逐一分析即可. 【解答】解:①∵分别以线段AC的两个端点A,C为圆心,大于AC的长为半径画弧, ∴AB=BC, ∴BD垂直平分AC,故此小题正确; ②在△ABC与△ADC中, ∵, ∴△ABC≌△ADC(SSS), ∴AC平分∠BAD,故此小题正确; ③只有当∠BAD=90°时,AC=BD,故本小题错误; ④∵AB=BC=CD=AD, ∴四边形ABCD是菱形, ∴四边形ABCD是中心对称图形,故此小题正确. 故选C. 【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.   8.观察图中尺规作图痕迹,下列结论错误的是(  ) A.PQ为∠APB的平分线 B.PA=PB C.点A、B到PQ的距离不相等 D.∠APQ=∠BPQ 【考点】作图—基本作图. 【分析】根据角平分线的作法进行解答即可. 【解答】解:∵由图可知,PQ是∠APB的平分线, ∴A,B,D正确; ∵PQ是∠APB的平分线,PA=PB, ∴点A、B到PQ的距离相等,故C错误. 故选C. 【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法及性质是解答此题的关键.   9.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是(  ) 作法: ①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E; ②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C; ③画射线OC,射线OC就是∠AOB的角平分线. A.ASA B.SAS C.SSS D.AAS 【考点】作图—基本作图;全等三角形的判定. 【分析】根据作图的过程知道:OE=OD,OC=OC,CE=CD,所以由全等三角形的判定定理SSS可以证得△EOC≌△DOC. 【解答】解:如图,连接EC、DC. 根据作图的过程知, 在△EOC与△DOC中, , △EOC≌△DOC(SSS). 故选:C. 【点评】本题考查了全等三角形的判定定理的应用,注意:三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.   10.如图,以等腰直角△ABC两锐角顶点A、B为圆心作等圆,⊙A与⊙B恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为(  ) A. B. C. D. 【考点】扇形面积的计算;相切两圆的性质. 【专题】压轴题. 【分析】根据直角三角形的两锐角互余,即可得到∠A+∠B=90°,再由⊙A与⊙B恰好外切且是等圆,根据扇形的面积公式即可求解. 【解答】解:∵AC=2,△ABC是等腰直角三角形, ∴AB=2, ∵⊙A与⊙B恰好外切且是等圆, ∴两个扇形(即阴影部分)的面积之和=+==πR2=. 故选B. 【点评】本题考查了扇形的面积计算及相切两圆的性质,解答本题的关键是得出两扇形面积之和的表达式,难度一般.   11.如图,AB,CD是⊙O的两条互相垂直的直径,点O1,O2,O3,O4分别是OA、OB、OC、OD的中点,若⊙O的半径为2,则阴影部分的面积为(  ) A.8 B.4 C.4π+4 D.4π﹣4 【考点】扇形面积的计算;圆与圆的位置关系. 【分析】首先根据已知得出正方形内空白面积,进而得出扇形COB中两空白面积相等,进而得出阴影部分面积. 【解答】解:如图所示: 可得正方形EFMN,边长为2, 正方形中两部分阴影面积为:22﹣π×12=4﹣π, ∴正方形内空白面积为:4﹣2(4﹣π)=2π﹣4, ∵⊙O的半径为2, ∴O1,O2,O3,O4的半径为1, ∴小圆的面积为:π×12=π, 扇形COB的面积为:=π, ∴扇形COB中两空白面积相等, ∴阴影部分的面积为:π×22﹣2(2π﹣4)=8. 故选A. 【点评】此题主要考查了扇形的面积公式以及正方形面积公式,根据已知得出空白面积是解题关键.   二、填空题(共14小题) 12.阅读下面材料: 在数学课上,老师提出如下问题: 小芸的作法如下: 老师说:“小芸的作法正确.” 请回答:小芸的作图依据是 到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线. . 【考点】作图—基本作图. 【专题】作图题;压轴题. 【分析】通过作图得到CA=CB,DA=DB,则可根据线段垂直平分线定理的逆定理判断CD为线段AB的垂直平分线. 【解答】解:∵CA=CB,DA=DB, ∴CD垂直平分AB(到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线.) 故答案为:到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线.. 【点评】本题考查了基本作图:基本作图有:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.   13.如图,在△ABC中,按以下步骤作图: ①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点; ②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为 105° . 【考点】作图—基本作图;线段垂直平分线的性质. 【分析】首先根据题目中的作图方法确定MN是线段BC的垂直平分线,然后利用垂直平分线的性质解题即可. 【解答】解:由题中作图方法知道MN为线段BC的垂直平分线, ∴CD=BD, ∵∠B=25°, ∴∠DCB=∠B=25°, ∴∠ADC=50°, ∵CD=AC, ∴∠A=∠ADC=50°, ∴∠ACD=80°, ∴∠ACB=∠ACD+∠BCD=80°+25°=105°, 故答案为:105°. 【点评】本题考查了基本作图中的垂直平分线的作法及线段的垂直平分线的性质,解题的关键是了解垂直平分线的做法.   14.如图,△ABC的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点B逆时针旋转到△A′BC′的位置,且点A′、C′仍落在格点上,则图中阴影部分的面积约是 7.2 .(π≈3.14,结果精确到0.1) 【考点】扇形面积的计算;旋转的性质. 【专题】压轴题. 【分析】扇形BAB'的面积减去△BB'C'的面积即可得出阴影部分的面积. 【解答】解:由题意可得,AB=BA'==,∠ABA'=90°, S扇形BAA'==,S△BA'C'=BC'×B'C'=3, 则S阴影=S扇形BAA'﹣S△BA'C'=﹣3≈7.2. 故答案为:7.2. 【点评】本题考查了扇形的面积计算,解答本题的关键是求出扇形的半径,及阴影部分面积的表达式.   15.如图,在△ABC中,AC=BC,∠B=70°,分别以点A、C为圆心,大于AC的长为半径作弧,两弧相交于点M、N,作直线MN,分别交AC、BC于点D、E,连结AE,则∠AED的度数是 50 °. 【考点】作图—基本作图;等腰三角形的性质. 【分析】由作图可知,MN是线段AC的垂直平分线,故可得出结论. 【解答】解:∵由作图可知,MN是线段AC的垂直平分线, ∴CE=AE, ∴∠C=∠CAE, ∵AC=BC,∠B=70°, ∴∠C=40°, ∴∠AED=50°, 故答案为:50. 【点评】本题考查的是线段垂直平分线的性质以及勾股定理的应用,熟知线段垂直平分线的性质是解答此题的关键.   16.如图,Rt△ABC中,∠C=90°,AC=8,BC=6,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为 π . 【考点】扇形面积的计算;勾股定理;相切两圆的性质. 【专题】计算题;压轴题. 【分析】根据题意,可得阴影部分的面积等于圆心角为90°的扇形的面积. 【解答】解:∵∠C=90°,AC=8,BC=6, ∴AB=10, ∴扇形的半径为5, ∴阴影部分的面积==π. 故答案为:π. 【点评】解决本题的关键是把两个阴影部分的面积整理为一个规则扇形的面积.   17.如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是  .(结果保留π) 【考点】扇形面积的计算. 【专题】压轴题. 【分析】过点O作OD⊥BC于点D,交于点E,则可判断点O是的中点,由折叠的性质可得OD=OE=R=2,在Rt△OBD中求出∠OBD=30°,继而得出∠AOC,求出扇形AOC的面积即可得出阴影部分的面积. 【解答】解:过点O作OD⊥BC于点D,交于点E,连接OC, 则点E是的中点,由折叠的性质可得点O为的中点, ∴S弓形BO=S弓形CO, 在Rt△BOD中,OD=DE=R=2,OB=R=4, ∴∠OBD=30°, ∴∠AOC=60°, ∴S阴影=S扇形AOC==. 故答案为:. 【点评】本题考查了扇形面积的计算,解答本题的关键是作出辅助线,判断点O是的中点,将阴影部分的面积转化为扇形的面积.   18.如图,以BC为直径的⊙O与△ABC的另两边分别相交于点D、E.若∠A=60°,BC=4,则图中阴影部分的面积为 π .(结果保留π) 【考点】扇形面积的计算. 【专题】压轴题. 【分析】先根据三角形内角和定理得出∠ABC+∠ACB的度数,再由△OBD、△OCE是等腰三角形得出∠BDO+∠CEO的度数,由三角形内角和定理即可得出∠BOD+∠COD的度数,再根据扇形的面积公式即可得出结论. 【解答】解:∵△ABC中,∠A=60°, ∴∠ABC+∠ACB=180°﹣60°=120°, ∵△OBD、△OCE是等腰三角形, ∴∠BDO+∠CEO=∠ABC+∠ACB=120°, ∴∠BOD+∠COE=360°﹣(∠BDO+∠CEO)﹣(∠ABC+∠ACB)=360°﹣120°﹣120°=120°, ∵BC=4, ∴OB=OC=2, ∴S阴影==π. 故答案为:π. 【点评】本题考查的是扇形面积的计算,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件,要求同学们掌握扇形的面积公式.   19.如图,AB是⊙O的直径,弦AC=2,∠ABC=30°,则图中阴影部分的面积是 ﹣ . 【考点】扇形面积的计算;圆周角定理. 【专题】压轴题. 【分析】如图,连接OC.图中阴影部分的面积=扇形OBC的面积﹣△BOC的面积. 【解答】解:如图,连接OC. ∵OB=OC, ∴∠OBC=∠OCB=30° ∴∠BOC=180°﹣30°﹣30°=120°. 又∵AB是直径, ∴∠ACB=90°, ∴在Rt△ABC中,AC=2,∠ABC=30°,则AB=2AC=4,BC==2. ∵OC是△ABC斜边上的中线, ∴S△BOC=S△ABC=×AC•BC=×2×2=. ∴S阴影=S扇形OBC﹣S△BOC=﹣=﹣. 故答案是:﹣. 【点评】本题考查了扇形面积的计算、圆周角定理.求图中阴影部分的面积时,采用了“分割法”,即把不规则阴影图形转化为规则图形,然后来计算其面积.   20.如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当≤r<2时,S的取值范围是 ﹣1≤S<﹣ . 【考点】扇形面积的计算;等边三角形的性质. 【专题】压轴题. 【分析】首先求出S关于r的函数表达式,分析其增减性;然后根据r的取值,求出S的最大值与最小值,从而得到S的取值范围. 【解答】解:如右图所示,过点D作DG⊥BC于点G,易知G为BC的中点,CG=1. 在Rt△CDG中,由勾股定理得:DG==. 设∠DCG=θ,则由题意可得: S=2(S扇形CDE﹣S△CDG)=2(﹣×1×)=﹣, ∴S=﹣. 当r增大时,∠DCG=θ随之增大,故S随r的增大而增大. 当r=时,DG==1,∵CG=1,故θ=45°, ∴S=﹣=﹣1; 若r=2,则DG==,∵CG=1,故θ=60°, ∴S=﹣=﹣. ∴S的取值范围是:﹣1≤S<﹣. 故答案为:﹣1≤S<﹣. 【点评】本题考查扇形面积的计算、等边三角形的性质、勾股定理等重要知识点.解题关键是求出S的函数表达式,并分析其增减性.   21.如图,三角形ABC是边长为1的正三角形,与所对的圆心角均为120°,则图中阴影部分的面积为  . 【考点】扇形面积的计算;等边三角形的性质. 【专题】压轴题. 【分析】设与相交于点O,连OA,OB,OC,线段OA将阴影的上方部分分成两个弓形,将这两个弓形分别按顺时针及逆时针方向绕点O旋转120°后,阴影部分便合并成△OBC,得到它的面积等于△ABC面积的三分之一,利用等边三角形的面积公式:×边长2,即可求得阴影部分的面积. 【解答】解:如图,设与相交于点O,连接OA,OB,OC,线段OA将阴影的上方部分分成两个弓形,将这两个弓形分别按顺时针及反时针绕点O旋转120°后,阴影部分便合并成△OBC,它的面积等于△ABC面积的三分之一, ∴S阴影部分=××12=. 故答案为:. 【点评】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了等边三角形的面积公式:×边长2.   22.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为  (结果保留根号). 【考点】扇形面积的计算. 【专题】压轴题. 【分析】若两个阴影部分的面积相等,那么△ABC和扇形ADF的面积就相等,可分别表示出两者的面积,然后列出方程即可求出AF的长度. 【解答】解:∵图中两个阴影部分的面积相等, ∴S扇形ADF=S△ABC,即:=×AC×BC, 又∵AC=BC=1, ∴AF2=, ∴AF=. 故答案为. 【点评】此题主要考查了扇形面积的计算方法及等腰直角三角形的性质,能够根据题意得到△ABC和扇形ADF的面积相等,是解决此题的关键,难度一般.   23.如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为 2π﹣4 . 【考点】扇形面积的计算;中心对称图形. 【专题】压轴题. 【分析】连接AB,则阴影部分面积=2(S扇形AOB﹣S△ABO),依此计算即可求解. 【解答】解: 由题意得,阴影部分面积=2(S扇形AOB﹣S△AOB)=2(﹣×2×2)=2π﹣4. 故答案为:2π﹣4. 【点评】此题主要考查了扇形的面积公式,应用与设计作图,关键是需要同学们仔细观察图形,将不规则面积转化.   24.如图,在△ABC中,∠BAC=90°,AB=5cm,AC=2cm,将△ABC绕顶点C按顺时针方向旋转45°至△A1B1C的位置,则线段AB扫过区域(图中的阴影部分)的面积为  cm2. 【考点】扇形面积的计算;旋转的性质. 【分析】根据阴影部分的面积是:S扇形BCB1+S△CB1A1﹣S△ABC﹣S扇形CAA1,分别求得:扇形BCB1的面积,S△CB1A1,S△ABC以及扇形CAA1的面积,即可求解. 【解答】解:在Rt△ABC中,BC==, 扇形BCB1的面积是==, S△CB1A1=×5×2=5; S扇形CAA1==. 故S阴影部分=S扇形BCB1+S△CB1A1﹣S△ABC﹣S扇形CAA1=+5﹣5﹣=. 故答案为:. 【点评】本题考查了扇形的面积的计算,正确理解阴影部分的面积=S扇形BCB1+S△CB1A1﹣S△ABC﹣S扇形CAA1是关键.   25.如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为 10π . 【考点】扇形面积的计算;勾股定理;垂径定理;圆心角、弧、弦的关系. 【专题】综合题. 【分析】根据弦AB=BC,弦CD=DE,可得∠BOD=90°,∠BOD=90°,过点O作OF⊥BC于点F,OG⊥CD于点G,在四边形OFCG中可得∠FCD=135°,过点C作CN∥OF,交OG于点N,判断△CNG、△OMN为等腰直角三角形,分别求出NG、ON,继而得出OG,在Rt△OGD中求出OD,即得圆O的半径,代入扇形面积公式求解即可. 【解答】解: ∵弦AB=BC,弦CD=DE, ∴点B是弧AC的中点,点D是弧CE的中点, ∴∠BOD=90°, 过点O作OF⊥BC于点F,OG⊥CD于点G. 则BF=FC=2,CG=GD=2,∠FOG=45°, 在四边形OFCG中,∠FCD=135°, 过点C作CN∥OF,交OG于点N, 则∠FCN=90°,∠NCG=135°﹣90°=45°, ∴△CNG为等腰三角形, ∴CG=NG=2, 过点N作NM⊥OF于点M,则MN=FC=2, 在等腰三角形MNO中,NO=MN=4, ∴OG=ON+NG=6, 在Rt△OGD中,OD===2, 即圆O的半径为2, 故S阴影=S扇形OBD==10π. 故答案为:10π. 【点评】本题考查了扇形的面积计算、勾股定理、垂径定理及圆心角、弧之间的关系,综合考察的知识点较多,解答本题的关键是求出圆0的半径,此题难度较大.   三、解答题(共5小题) 26.根据图中尺规作图的痕迹,先判断得出结论: OM平分∠BOA ,然后证明你的结论(不要求写已知、求证) 【考点】作图—基本作图;全等三角形的判定与性质. 【专题】作图题. 【分析】根据图中尺规作图的痕迹可知,OC=OD,CM=DM,根据全等三角形的判定和性质得到答案. 【解答】解:结论:OM平分∠BOA, 证明:由作图的痕迹可知,OC=OD,CM=DM, 在△COM和△DOM中, , ∴△COM≌△DOM, ∴∠COM=∠DOM, ∴OM平分∠BOA. 【点评】本题考查的是角平分线的作法和全等三角形的判定和性质,掌握基本尺规作图的步骤和全等三角形的判定定理和性质定理是解题的关键.   27.如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E. (1)求证:AB=AE; (2)若∠A=100°,求∠EBC的度数. 【考点】作图—基本作图;等腰三角形的判定与性质. 【分析】(1)根据平行线的性质,可得∠AEB=∠EBC,根据角平分线的性质,可得∠EBC=∠ABE,根据等腰三角形的判定,可得答案; (2)根据三角形的内角和定理,可得∠AEB,根据平行线的性质,可得答案. 【解答】(1)证明:∵AD∥BC, ∴∠AEB=∠EBC. 由BE是∠ABC的角平分线, ∴∠EBC=∠ABE, ∴∠AEB=∠ABE, ∴AB=AE; (2)由∠A=100°,∠ABE=∠AEB,得 ∠ABE=∠AEB=40°. 由AD∥BC,得 ∠EBC=∠AEB=40°. 【点评】本题考查了等腰三角形的判定,利用了平行线的性质,角平分线的性质,等腰三角形的判定.   28.如图,△ABC是等边三角形,D是BC的中点. (1)作图: ①过B作AC的平行线BH; ②过D作BH的垂线,分别交AC,BH,AB的延长线于E,F,G. (2)在图中找出一对全等的三角形,并证明你的结论. 【考点】作图—基本作图;全等三角形的判定;等边三角形的性质. 【分析】(1)根据平行线及垂线的作法画图即可; (2)根据ASA定理得出△DEC≌△DFB即可. 【解答】解:(1)作图如下:①如图1; ②如图2: (2)△DEC≌△DFB 证明:∵BH∥AC, ∴∠DCE=∠DBF, 又∵D是BC中点, ∴DC=DB. 在△DEC与△DFB中, ∵, ∴△DEC≌△DFB(ASA). 【点评】本题考查的是作图﹣基本作图,熟知等边三角形的性质是解答此题的关键.   29.如图,在△ABC中,∠C=60°,∠A=40°. (1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明); (2)求证:BD平分∠CBA. 【考点】作图—基本作图;线段垂直平分线的性质. 【专题】作图题. 【分析】(1)分别以A、B两点为圆心,以大于AB长度为半径画弧,在AB两边分别相交于两点,然后过这两点作直线即为AB的垂直平分线; (2)根据线段垂直平分线的性质和三角形的内角和证明即可. 【解答】解:(1)如图1所示: (2)连接BD,如图2所示: ∵∠C=60°,∠A=40°, ∴∠CBA=80°, ∵DE是AB的垂直平分线, ∴∠A=∠DBA=40°, ∴∠DBA=∠CBA, ∴BD平分∠CBA. 【点评】本题考查了线段的垂直平分线的性质及三角形的内角和及基本作图,解题的关键是了解垂直平分线上的点到线段两端点的距离相等.   30.如图,BD是矩形ABCD的一条对角线. (1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法); (2)求证:DE=BF. 【考点】作图—基本作图;线段垂直平分线的性质;矩形的性质. 【专题】作图题;证明题. 【分析】(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线; (2)利用垂直平分线证得△DEO≌△BFO即可证得结论. 【解答】解:(1)答题如图: (2)∵四边形ABCD为矩形, ∴AD∥BC, ∴∠ADB=∠CBD, ∵EF垂直平分线段BD,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服