收藏 分销(赏)

人教版数学七年级上册教案.doc

上传人:仙人****88 文档编号:11209671 上传时间:2025-07-07 格式:DOC 页数:168 大小:3.26MB 下载积分:10 金币
下载 相关 举报
人教版数学七年级上册教案.doc_第1页
第1页 / 共168页
人教版数学七年级上册教案.doc_第2页
第2页 / 共168页


点击查看更多>>
资源描述
课题: 1.1 正数和负数(1) 授课时间:____________ 学习目标 1、整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念; 2、能区分两种不同意义的量,会用符号表示正数和负数; 3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。 教学难点 正确区分两种不同意义的量。 知识重点 两种相反意义的量 教学过程(师生活动) 引入课题 上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考. 师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.69米,体重74.5千克,今年43岁.我们的班级是七(2)班,有50个同学,其中男同学有27个,占全班总人数的54%… 问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗? 学生活动:思考,交流   师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数). 问题2:在生活中,仅有整数和分数够用了吗?  请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。 (也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等) 学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。 先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际. 这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。 以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。 探究新知 问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢? 这些问题都必须要求学生理解. 教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流. 这阶段主要是让学生学会正数和负数的表示. 强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量. 这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。 举一反三思维拓展 经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维. 问题4:请同学们举出用正数和负数表示的例子. 问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明. 能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性 课堂练习 教科书第3页练习   小结与作业   课堂小结 围绕下面两点,以师生共同交流的方式进行: 1、0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了; 2、正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。 3、教科书第5页习题1.1 第1,2,4(第3题作为下节课的思考题)。  教学后记: 1.1 正数和负数(2) 授课时间:____________ 教学目标 1、 通过对数“零”的意义的探讨,进一步理解正数和负数的概念; 2、利用正负数正确表示相反意义的量(规定了指定方向变化的量) 3、 进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。 教学难点 深化对正负数概念的理解 知识重点 正确理解和表示向指定方向变化的量 教学过程 学前准备: 上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢? 问题1:有没有一种既不是正数又不是负数的数呢? 学生思考并讨论. (数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考) 例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数。 那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数。 问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? “数0既不是正数,也不是负数”也应看作是负数定义的一部分.在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理数概念的建立都有帮助。 所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究. 问题3:教科书第4页例题  说明:这是一个用正负数描述向指定方向变化情况的例子, 通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。 归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).类似的例子很多,如: 水位上升-3m,实际表示什么意思呢? 收人增加-10%,实际表示什么意思呢? 等等。可视教学中的实际情况进行补充。这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出. 巩固练习 教科书第4页练习   阅读思考   教科书第6页 阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流 课堂小结 以问题的形式,要求学生思考交流: 1、引人负数后,你是怎样认识数0的,数0的意义有哪些变化? 2、怎样用正负数表示具有相反意义的量? (用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)   作业 1、  必做题:教科书第7页习题1.1第3,6,7,8题 2、预习下一节课有理数 预习指导:什么是有理数?你认为有理数可分为哪几类? 教学后记: 课题:1.2.1 有理数  授课时间:___________ 教学目标 1、 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力; 2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义; 3、体验分类是数学上的常用处理问题的方法。 教学难点 正确理解分类的标准和按照一定的标准进行分类 知识重点 正确理解有理数的概念 教学过程 探索新知 在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出). 问题1:观察黑板上的9个数,并给它们进行分类. 学生思考讨论和交流分类的情况. 学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励. 例如, 对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,.··…(由于小数可化为分数,以后把小数和分数都称为分数) 通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’. 按照书本的说法,得出“整数”“分数”和“有理数”的概念. 看书了解有理数名称的由来. “统称”是指“合起来总的名称”的意思. 试一试:按照以上的分类,你能画出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 练一练 1、任意写出三个有理数,并说出是什么类型的数,与同伴进行交流. 2、教科书第8页练习. 此练习中出现了集合的概念,可向学生作如下的说明. 把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……; 数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号. 思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗? 创新探究 问题2:有理数可分为正数和负数两大类,对吗?为什么? 教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。     小结与作业   课堂小结 到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。       作业 1、必做题:教科书第14页习题1.2第1题 教学后记: 1.2.2 数轴 授课时间:____________ 教学目标: 1.巩固理解有理数的概念; 2.掌握数轴的意义及构成特点,明确其在实际中的应用; 3.会用数轴上的点表示有理数. 教学重点: 数轴的意义及作用. 教学难点: 数轴上的点与有理数的直观对应关系. 教学方法: 自主互助,小组交流 课前预习:课本p8—10 教学过程: 探索新知(投影展示) 问题 在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。 学生结合上述问题分组讨论,明确以下问题: 1.怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)? 2.举例说明生活中类似的事例; 3.什么叫数轴?它有哪几个要素组成? 4.数轴的用处是什么? 5.你会画数轴吗并应用它吗? 1.“问题”解决:课件投影课本p8图1.2-1,同时说明其产生的过程及合理、简明的特点; 结论:正数、0和负数可以用一条直线上的点表示出来。 2.展示温度计图形,比较其与图1.2-1的共同点和不同点: 共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形; 不同点:温度计是竖直的,方向感不直观。 3.描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调) (1)数轴的构成三要素:原点、方向、单位长度; (2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1.2-3),说明有理数都可以用数轴上的点表示; 4.归纳: (1)一般地,设a是一个正数,则数轴上表示数a的点在原点的 边,与原点的距离是 个单位长度;表示数-a的点在原点的 边,与原点的距离是 个单位长度。 (2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。 三.例题分析 例1.先画出数轴,然后在数轴上表示下列各数: -1.5,0,-2,2,-10/3 例2.数轴上与原点距离4个长度单位的点表示的数是 。 四.巩固训练 课本p10练习 自我检测 (1)数轴的三要素是 ; (2)数轴上表示-5的点在原点的 侧,与原点的距离是 个长度单位; (3)数轴上表示5与-2的两点之间距离是 单位长度,有 个 点; (4)如图,a、b为有理数,则a 0,b 0,a b 0 a b 五.课堂小结 六.作业 1.课本14页习题1、2 2.完成“自我检测” 3.个性补充 教学后记: 课题: 1.2.3 相反数 授课时间:____________ 教学目标: 1、理解、掌握相反数的意义. 2、掌握求一个已知数的相反数方法. 3、体验数行结合思想. 重点:相反数的意义 难点:相反数在数轴上表示的点的特征 教学方法:引导学生自主探索 教学过程 一、学前准备 1、请把下列四个数分成两类,再说说你这样分的理由 5,—2,—5,2 2、把上面的四个数画在数轴上,请观察它们表示的点具有的特征是 .换成2.5和—2.5试试,怎么样? 从上面问题可以看出,一般地,如果a是一个正数,那么数轴上与原点的距离是a的点有两个,即一个表示a,另一个是 ,它们分别在原点的左边和右边,我们说,这两点关于原点对称. 二、探究新知 1、相反数的概念 像2和—2、5和—5、2.5和—2.5这样,只有 不同的两个数叫做互为相反数. 2、练习 1)、3.5的相反数是 ,—和 是互为相反数, 的相反数是73.24. 2)、a和 互为相反数,也就是说,—a是 的相反数 例如a=7时,—a=—7,即7的相反数是—7. a=—5时,—a=—(—5),“—(—5)”读作“-5的相反数”,而—5的相反数是5,所以,—(—5)=5 你发现了吗,在一个数的前面添上一个“—”号,这个数就成了原数的 3)简化符号:-(+0.75)= ,-(-68)= , -(-0.5 )= ,-(+3.8)= . 4)、0的相反数是 . 3、数轴上表示相反数的两个点和原点的距离 . 4、练习 P11第1、2、3题 三、小结 四、作业 1.分别写出下列各数的相反数:    2.在数轴上标出2,-4.5,0各数与它们的相反数.    3.填空:   (1)-1.6是______的相反数,______的相反数是-0.2.    4.化简下列各数: (1)-(-16); (2)-(+20); (3)+(+50);    5.填空:   (1)如果a=-13,那么-a=______;(2)如果-a=-5.4,那么a=______; (3)如果-x=-6,那么x=______;(4)-x=9,那么x=______. 教学后记: 课题: 1.2.4 绝对值(一) 授课时间:___________  教学目标: 1、理解、掌握绝对值概念.体会绝对值的作用与意义 2、掌握求一个已知数的绝对值和有理数大小比较的方法. 3、体验运用直观知识解决数学问题的成功. 重点:绝对值的概念 难点:绝对值的概念与两个负数的大小比较 教学方法:引导学生自主探索 教学过程 第一课时 一、学前准备 问题:如下图 小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线 (填相同或不相同),他们行走的距离(即路程远近) 二、合作探究、归纳 1、由上问题可以知道,10到原点的距离是 ,—10到原点的距离也是 到原点的距离等于10的数有 个,它们的关系是一对 . 这时我们就说10的绝对值是10,—10的绝对值也是10. 例如,—3.8的绝对值是3.8;17的绝对值是17;—6的绝对值是 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣ 2、练习 1)、式子∣-5.7∣表示的意义是 . 2)、—2的绝对值表示它离开原点的距离是 个单位,记作 . 3)、∣24∣= . ∣—3.1∣= ,∣—∣= ,∣0∣= . 3、思考、交流、归纳 由绝对值的定义可知:一个正数的绝对值是 ;一个负数的绝对值是它的 ;0的绝对值是 . 用式子表示就是: 1)、当a是正数(即a>0)时,∣a∣= ; 2)、当a是负数(即a<0)时,∣a∣= ; 3)、当a=0时,∣a∣= . 4、随堂练习 P12第1、2大题(直接做在课本上) 教学后记 课题: 1.2.4 绝对值(二) 1、什么叫一个数的绝对值? 2、说出下列个数的绝对值:-2.2 +3 -7 +10% 0 探究新知 1、阅读思考,发现新知 阅读P12问题—P13第12行,你有什么发现吗? 在数轴上表示的两个数,右边的数总要 左边的数。(1页) 也就是:1)、正数 0,负数 0,正数大于负数. 2)、两个负数,绝对值大的 . 巩固新知,灵活应用 1、例题 P13 2、比较下列各对数的大小:—3和—5; —2.5和—∣—2.25∣ 3、怎样比较有理数的大小? 五、自我测试 1.;;. 2.;;. 3.;. 4.______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数. 5.一个数的绝对值是,那么这个数为______. 6.绝对值等于4的数是______. 7、比较大小; 0.3 —564;— — 8.绝对值等于其相反数的数一定是…………………………………( ) A.负数 B.正数 C.负数或零 D.正数或零 9.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等. 其中正确的有…………………………………………………( ) A.0个 B.1个 C.2个 D.3个 拓展练习(有困难同学可以不做) 1.如果,则的取值范围是 …………………………( ) A.>O B.≥O C.≤O D.<O 2.,则; ,则. 3.如果,则,. 4.绝对值不大于11.1的整数有……………………………………( ) A.11个 B.12个 C.22个 D.23个 教学后记 1.3 有理数的加法(1) 授课时间:__________ 总第 个教案 教学目标: 1、理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算. 2、经历探究有理数有理数加法法则过程,学会与他人交流合作. 3、会利用有理数加法运算解决简单的实际问题. 重点:和的符号的确定 难点:异号两数相加 教学过程 一、学前准备 1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球数为4+(-2),蓝队的净胜球数为 1+(-1)。 这里用到正数和负数的加法。那么,怎样计算4+(-2)呢? 2、一艘潜艇在水下20米,过了一段时间又下潜了15米,现在潜艇在水下 米,你是怎么知道的?能用一个算式表示吗? . 又该怎样计算呢?下面我们一起借助数轴来讨论有理数的加法。 二、探究新知 3、借助数轴来讨论有理数的加法 1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了 米,这个问题用算式表示就是: 2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两次共向西走多少米?很明显,两次共向西走了 米. 这个问题用算式表示就是: 如图所示: (3页) 3) 如果向西走2米,再向东走4米, 那么两次运动后,这个人从起点向东走了 米,写成算式就是 这个问题用数轴表示如下图所示: 4)利用数轴,求以下情况时这个人两次运动的结果: 先向东走3米,再向西走5米,这个人从起点向( )走了( )米; 先向东走5米,再向西走5米,这个人从起点向( )走了( )米; 先向西走5米,再向东走5米,这个人从起点向( )走了( )米。 写出这三种情况运动结果的算式 5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了 米。写成算式就是 你能从以上几个算式中发现有理数加法的运算法则吗? 有理数加法法则 (1)、同号的两数相加,取 的符号,并把 相加. (2).绝对值不相等的异号两数相加,取 的加数的符号,并用较大的绝对值 较小的绝对值. 互为相反数的两个数相加得 . 注意法则的应用,尤其是和的符号的确定! (3)、一个数同0相加,仍得 。 三、 应用探究 例1 计算(能完成吗,先自己动动手吧!) (-3)+(-9); (2)(-4·7)+3·9. 例2 足球循环赛中, 红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算各队的净胜球数。 解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数。 三场比赛中,红队共进4球,失2球,净胜球数为 (+4)+(—2)=+(4—2)=2; 黄队共进2球,失4球,净胜球数为 (+2)+(—4)= —(4—2)= ( );蓝队共进( )球,失( )球,净胜球数为( )=( )。 3、课堂练习1.填空: 练习2. P18第1、2题 (1)(-3)+(-5)= ; (2)3+(-5)= ; (3)5+(-3)= ; (4)7+(-7)= ; (5)8+(-1)= ; (6)(-8)+1 = ; (7)(-6)+0 = ; (8)0+(-2) = ; 四、谈谈你这堂课的收获,自己作个总结 五、作业 1、P24 1 P26 7 2、计算: (1)(-13)+(-18); (2)20+(-14); (3)1.7 + 2.8 ; (4)2.3 + (-3.1); (5)(-)+(-); (6)1+(-1.5); (7)(-3.04)+ 6 ; (8)+(-). 3.判断题: (1)两个负数的和一定是负数; (2)绝对值相等的两个数的和等于零; (3)若两个有理数相加时的和为负数,这两个有理数一定都是负数; (4)若两个有理数相加时的和为正数,这两个有理数一定都是正数. 4.当a = -1.6,b = 2.4时,求a+b和a+(-b)的值. 5.已知│a│= 8,│b│= 2. (1)当a、b同号时,求a+b的值; (2)当a、b异号时,求a+b的值. 教学后记: 1.3 有理数的加法(2) 授课时间:_________ 总第 个教案 教学目标: 1、进一步掌握并能熟练应用有理数加法法则进行有理数加法运算. 2、掌握加法运算律并理解其在加法中的作用. 3、培养观察、思维和简单的推理能力. 学习重点:如何运用加法运算定律简化运算 学习难点:灵活运用加法运算定律 教学方法:引导、探究、归纳 教学过程 一、学前准备 1、想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母表示写在下面: 、 2、计算 30 +(-20), (-20)+30. [ 8 +(-5)] +(-4), 8 + [(-5)]+(-4)]. 思考:观察上面的式子与计算结果,你有什么发现? 二、探究归纳 1、引导归纳 请说说你发现的规律 2、自己换几个数字验证一下,还有上面的规律吗 3、由上可以知道,小学学习的加法交换律、结合律在有理数范围内同样适应,即:两个数相加,交换加数的位置,和 .式子表示为 三个数相加,先把前两个数相加,或者先把后两个数相加,和 用式子表示为 想想看,式子中的字母可以是哪些数? 三、定律应用 1、例1 计算: 1)16 +(-25)+ 24 +(-35) 2)(—2.48)+(+4.33)+(—7.52)+(—4.33) 2、例2 每袋小麦的标准重量为90千克,10袋小麦称重记录如下: 91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.1 10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克? 想一想,你会怎样计算,再把自己的想法与同伴交流一下. 师生共同小结、比较不同解法, 3、练习 1)、P201、2 2)P20实验与探究 四、小结 请说说这堂课学习的体会 五、自我测试 1.计算: (1)(-7)+ 11 + 3 +(-2); (2) 2、最小的正整数、绝对值最小的数、最大的负整数的和.是 3.绝对值不大于10的数有 个,它们的和是 . 4、填空: (1)若a>0,b>0,那么a+b 0. (2)若a<0,b<0,那么a+b 0. (3)若a>0,b<0,且│a│>│b│那么a+b 0. (4)若a<0,b>0,且│a│>│b│那么a+b 0. 5.计算: (1)│-4.4│+(+8)+11+(-0.1); (2) 4.某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天,共增加多少元? 六、作业 课本P252 、P269、10 教学后记: 1.3 有理数的减法(1) 授课时间:____________总第 个教案 学习目标: 1、经历探索有理数减法法则的过程.理解并掌握有理数减法法则. 2、会正确进行有理数减法运算. 3、体验把减法转化为加法的转化思想. 学习重点:有理数减法法则和运算 学习难点:有理数减法法则的推导 教学方法:引导、探究、归纳 教学过程 一、学前准备 1、世界上最高的山峰珠穆郎玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为 —154米,两处的高度相差多少呢? 试试看,计算的算式应该是 .能算出来吗,画草图试试 2、长春某天的气温是―2°C~3°C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:°C).显然,这天的温差是3―(―2). 想想看,温差到底是多少呢?那么,3―(―2)= . 二、探究新知 1、还记得吗,被减数、减数差之间的关系是:被减数—减数= . 差+减数= . 2、请你与同桌伙伴一起探究、交流: 要计算3―(―2)=?,实际上也就是要求:?+(—2)=3,所以这个数(差)应该是 .也就是3―(―2)=5. 再看看,3+2= .所以3―(―2) 3+2! 由上你有什么发现?请写出来 . 3、换两个式子计算一下,看看上面的结论还成立吗? —1—(—3)= , —1+3= ,所以—1—(—3) —1+3. 0—(—3)= , 0+3= ,所以0—(—3) 0+3. 4、师生归纳 1)法则:减去一个数等于加上这个数的相反数 2)字母表示:a-b=a+(-b) 三、新知应用 1、例题 例1 计算: (1) (-3)―(―5); (2)0-7; (3) 7.2―(―4.8); (4)-3 练习 1、计算: (1)(-37)-(-47); (2)(-53)-16; (3)(-210)-87; (4)1.3-(-2.7); (5); (6)(-2)-(-1); (7)(-6-6)-7; (18)(1-5)-(2-8). 2.分别求出数轴上下列两点间的距离: (1)表示数8的点与表示数3的点; (2)表示数-2的点与表示数-3的点. 教学后记: 1.3 有理数的减法(2) 授课时间:_______总第 个教案 教学目标: 1、理解加减法统一成加法运算的意义. 2、会将有理数的加减混合运算转化为有理数的加法运算. 3、培养学习数学的兴趣,增强学习数学的信心. 学习重点、难点:有理数加减法统一成加法运算 教学方法:讲练相结合 教学过程 一、学前准备 1、一架飞机作特技表演,起飞后的高度变化如下表: 高度的变化 上升4.5千米 下降3.2千米 上升1.1千米 下降1.4千米 记作 +4.5千米 —3.2千米 +1.1千米 —1.4千米 请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了 千米. 2、你是怎么算出来的,方法是 二、探究新知 1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧! 2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导. 3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为     .再把加号记在脑子里,省略不写 如:(-20)+(+3)-(-5)-(+7) 有加法也有减法 =(-20)+(+3)+(+5)+(-7) 先把减法转化为加法 = -20+3+5-7 再把加号记在脑子里,省略不写 可以读作:“负20、正3、正5、负7的 ”或者“负20加3加5减7”. 4、师生完整写出解题过程 三、解决问题 1、解决引例中的问题,再比较前面的方法,你的感觉是 2、例题:计算-4.4-(-4)-(+2)+(-2)+12.4 3、练习:计算 1)(—7)—(+5)+(—4)—(—10) 2) 三、巩固 1、小结:说说这节课的收获 2、P241、2 3、计算 1)27—18+(—7)—32 2) 四、作业 1、P25 5 2、P26第8题、14题 教学后记: 1.4 有理数的乘法(1) 授课时间:_______总第 个教案 学习目标: 1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算 2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力. 3、培养语言表达能力.调动学习积极性,培养学习数学的兴趣. 学习重点:有理数乘法 学习难点:法则推导 教学方法:引导、探究、归纳与练习相结合 教学过程 一、学前准备 一只蜗牛沿直线L爬行, 它现在的位置恰好在点O上. 我们规定:向左为负,向右为正,现在前为负,现在后为正 看看它以相同速度沿不同方向运动后的情况吧 二、探究新知 1、接上问题 (1)如果它以每分2cm的速度向右爬行,3分钟后它在什么位置? 可以表示为 . (2) 如果它以每分2cm的速度向左爬行,3分钟后它在什么位置? 可以表示为 (3) 如果它以每分2cm的速度向右爬行,3分钟前它在什么位置? 可以表示为 (4)如果它以每分2cm的速度向左爬行,3分钟前它在什么位置? 可以表示为 由上可知: (1) 2×3 = ; (2)(-2)×3 = ; (3)(+2)×(-3)= ; (4)(-2)×(-3)= ; (5)两个数相乘,一个数是0时,结果为0
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服