资源描述
课题: 1.1 正数和负数(1) 授课时间:____________
学习目标
1、整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;
2、能区分两种不同意义的量,会用符号表示正数和负数;
3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
教学难点 正确区分两种不同意义的量。
知识重点 两种相反意义的量
教学过程(师生活动)
引入课题
上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.
师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.69米,体重74.5千克,今年43岁.我们的班级是七(2)班,有50个同学,其中男同学有27个,占全班总人数的54%…
问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。 先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.
这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。
探究新知
问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?
这些问题都必须要求学生理解.
教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.
这阶段主要是让学生学会正数和负数的表示.
强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.
这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。
举一反三思维拓展
经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.
问题4:请同学们举出用正数和负数表示的例子.
问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明. 能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性
课堂练习 教科书第3页练习
小结与作业
课堂小结 围绕下面两点,以师生共同交流的方式进行:
1、0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;
2、正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。 3、教科书第5页习题1.1 第1,2,4(第3题作为下节课的思考题)。
教学后记:
1.1 正数和负数(2) 授课时间:____________
教学目标
1、 通过对数“零”的意义的探讨,进一步理解正数和负数的概念;
2、利用正负数正确表示相反意义的量(规定了指定方向变化的量)
3、 进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。
教学难点 深化对正负数概念的理解
知识重点 正确理解和表示向指定方向变化的量
教学过程
学前准备:
上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?
问题1:有没有一种既不是正数又不是负数的数呢?
学生思考并讨论.
(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)
例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数。
那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数。
问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? “数0既不是正数,也不是负数”也应看作是负数定义的一部分.在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理数概念的建立都有帮助。
所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究.
问题3:教科书第4页例题
说明:这是一个用正负数描述向指定方向变化情况的例子, 通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。
归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).类似的例子很多,如:
水位上升-3m,实际表示什么意思呢?
收人增加-10%,实际表示什么意思呢?
等等。可视教学中的实际情况进行补充。这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出.
巩固练习 教科书第4页练习
阅读思考
教科书第6页 阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流
课堂小结 以问题的形式,要求学生思考交流:
1、引人负数后,你是怎样认识数0的,数0的意义有哪些变化?
2、怎样用正负数表示具有相反意义的量?
(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)
作业 1、 必做题:教科书第7页习题1.1第3,6,7,8题
2、预习下一节课有理数
预习指导:什么是有理数?你认为有理数可分为哪几类?
教学后记:
课题:1.2.1 有理数 授课时间:___________
教学目标
1、 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3、体验分类是数学上的常用处理问题的方法。
教学难点 正确理解分类的标准和按照一定的标准进行分类
知识重点 正确理解有理数的概念
教学过程
探索新知
在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,.··…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
试一试:按照以上的分类,你能画出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)
练一练 1、任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2、教科书第8页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
创新探究 问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
小结与作业
课堂小结 到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
作业 1、必做题:教科书第14页习题1.2第1题
教学后记:
1.2.2 数轴 授课时间:____________
教学目标: 1.巩固理解有理数的概念;
2.掌握数轴的意义及构成特点,明确其在实际中的应用;
3.会用数轴上的点表示有理数.
教学重点: 数轴的意义及作用.
教学难点: 数轴上的点与有理数的直观对应关系.
教学方法: 自主互助,小组交流
课前预习:课本p8—10
教学过程:
探索新知(投影展示)
问题 在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。
学生结合上述问题分组讨论,明确以下问题:
1.怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?
2.举例说明生活中类似的事例;
3.什么叫数轴?它有哪几个要素组成?
4.数轴的用处是什么?
5.你会画数轴吗并应用它吗?
1.“问题”解决:课件投影课本p8图1.2-1,同时说明其产生的过程及合理、简明的特点;
结论:正数、0和负数可以用一条直线上的点表示出来。
2.展示温度计图形,比较其与图1.2-1的共同点和不同点:
共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;
不同点:温度计是竖直的,方向感不直观。
3.描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)
(1)数轴的构成三要素:原点、方向、单位长度;
(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1.2-3),说明有理数都可以用数轴上的点表示;
4.归纳:
(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的 边,与原点的距离是 个单位长度;表示数-a的点在原点的 边,与原点的距离是 个单位长度。
(2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。
三.例题分析
例1.先画出数轴,然后在数轴上表示下列各数:
-1.5,0,-2,2,-10/3
例2.数轴上与原点距离4个长度单位的点表示的数是 。
四.巩固训练
课本p10练习
自我检测
(1)数轴的三要素是 ;
(2)数轴上表示-5的点在原点的 侧,与原点的距离是 个长度单位;
(3)数轴上表示5与-2的两点之间距离是 单位长度,有 个 点;
(4)如图,a、b为有理数,则a 0,b 0,a b
0
a
b
五.课堂小结
六.作业 1.课本14页习题1、2
2.完成“自我检测”
3.个性补充
教学后记:
课题: 1.2.3 相反数 授课时间:____________
教学目标:
1、理解、掌握相反数的意义.
2、掌握求一个已知数的相反数方法.
3、体验数行结合思想.
重点:相反数的意义
难点:相反数在数轴上表示的点的特征
教学方法:引导学生自主探索
教学过程
一、学前准备
1、请把下列四个数分成两类,再说说你这样分的理由
5,—2,—5,2
2、把上面的四个数画在数轴上,请观察它们表示的点具有的特征是
.换成2.5和—2.5试试,怎么样?
从上面问题可以看出,一般地,如果a是一个正数,那么数轴上与原点的距离是a的点有两个,即一个表示a,另一个是 ,它们分别在原点的左边和右边,我们说,这两点关于原点对称.
二、探究新知
1、相反数的概念
像2和—2、5和—5、2.5和—2.5这样,只有 不同的两个数叫做互为相反数.
2、练习
1)、3.5的相反数是 ,—和 是互为相反数, 的相反数是73.24.
2)、a和 互为相反数,也就是说,—a是 的相反数
例如a=7时,—a=—7,即7的相反数是—7.
a=—5时,—a=—(—5),“—(—5)”读作“-5的相反数”,而—5的相反数是5,所以,—(—5)=5
你发现了吗,在一个数的前面添上一个“—”号,这个数就成了原数的
3)简化符号:-(+0.75)= ,-(-68)= ,
-(-0.5 )= ,-(+3.8)= .
4)、0的相反数是 .
3、数轴上表示相反数的两个点和原点的距离 .
4、练习 P11第1、2、3题
三、小结
四、作业
1.分别写出下列各数的相反数:
2.在数轴上标出2,-4.5,0各数与它们的相反数.
3.填空:
(1)-1.6是______的相反数,______的相反数是-0.2.
4.化简下列各数:
(1)-(-16); (2)-(+20); (3)+(+50);
5.填空:
(1)如果a=-13,那么-a=______;(2)如果-a=-5.4,那么a=______;
(3)如果-x=-6,那么x=______;(4)-x=9,那么x=______.
教学后记:
课题: 1.2.4 绝对值(一) 授课时间:___________
教学目标:
1、理解、掌握绝对值概念.体会绝对值的作用与意义
2、掌握求一个已知数的绝对值和有理数大小比较的方法.
3、体验运用直观知识解决数学问题的成功.
重点:绝对值的概念
难点:绝对值的概念与两个负数的大小比较
教学方法:引导学生自主探索
教学过程
第一课时
一、学前准备
问题:如下图
小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线 (填相同或不相同),他们行走的距离(即路程远近)
二、合作探究、归纳
1、由上问题可以知道,10到原点的距离是 ,—10到原点的距离也是
到原点的距离等于10的数有 个,它们的关系是一对 .
这时我们就说10的绝对值是10,—10的绝对值也是10.
例如,—3.8的绝对值是3.8;17的绝对值是17;—6的绝对值是
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣
2、练习
1)、式子∣-5.7∣表示的意义是 .
2)、—2的绝对值表示它离开原点的距离是 个单位,记作 .
3)、∣24∣= . ∣—3.1∣= ,∣—∣= ,∣0∣= .
3、思考、交流、归纳
由绝对值的定义可知:一个正数的绝对值是 ;一个负数的绝对值是它的 ;0的绝对值是 .
用式子表示就是:
1)、当a是正数(即a>0)时,∣a∣= ;
2)、当a是负数(即a<0)时,∣a∣= ;
3)、当a=0时,∣a∣= .
4、随堂练习 P12第1、2大题(直接做在课本上)
教学后记
课题: 1.2.4 绝对值(二)
1、什么叫一个数的绝对值?
2、说出下列个数的绝对值:-2.2 +3 -7 +10% 0
探究新知
1、阅读思考,发现新知
阅读P12问题—P13第12行,你有什么发现吗?
在数轴上表示的两个数,右边的数总要 左边的数。(1页)
也就是:1)、正数 0,负数 0,正数大于负数.
2)、两个负数,绝对值大的 .
巩固新知,灵活应用
1、例题 P13
2、比较下列各对数的大小:—3和—5; —2.5和—∣—2.25∣
3、怎样比较有理数的大小?
五、自我测试
1.;;.
2.;;.
3.;.
4.______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数.
5.一个数的绝对值是,那么这个数为______.
6.绝对值等于4的数是______.
7、比较大小; 0.3 —564;— —
8.绝对值等于其相反数的数一定是…………………………………( )
A.负数 B.正数 C.负数或零 D.正数或零
9.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.
其中正确的有…………………………………………………( )
A.0个 B.1个 C.2个 D.3个
拓展练习(有困难同学可以不做)
1.如果,则的取值范围是 …………………………( )
A.>O B.≥O C.≤O D.<O
2.,则; ,则.
3.如果,则,.
4.绝对值不大于11.1的整数有……………………………………( )
A.11个 B.12个 C.22个 D.23个
教学后记
1.3 有理数的加法(1) 授课时间:__________ 总第 个教案
教学目标:
1、理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算.
2、经历探究有理数有理数加法法则过程,学会与他人交流合作.
3、会利用有理数加法运算解决简单的实际问题.
重点:和的符号的确定
难点:异号两数相加
教学过程
一、学前准备
1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球数为4+(-2),蓝队的净胜球数为 1+(-1)。
这里用到正数和负数的加法。那么,怎样计算4+(-2)呢?
2、一艘潜艇在水下20米,过了一段时间又下潜了15米,现在潜艇在水下 米,你是怎么知道的?能用一个算式表示吗? .
又该怎样计算呢?下面我们一起借助数轴来讨论有理数的加法。
二、探究新知
3、借助数轴来讨论有理数的加法
1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了 米,这个问题用算式表示就是:
2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两次共向西走多少米?很明显,两次共向西走了 米.
这个问题用算式表示就是:
如图所示: (3页)
3) 如果向西走2米,再向东走4米, 那么两次运动后,这个人从起点向东走了 米,写成算式就是 这个问题用数轴表示如下图所示:
4)利用数轴,求以下情况时这个人两次运动的结果:
先向东走3米,再向西走5米,这个人从起点向( )走了( )米;
先向东走5米,再向西走5米,这个人从起点向( )走了( )米;
先向西走5米,再向东走5米,这个人从起点向( )走了( )米。
写出这三种情况运动结果的算式
5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了 米。写成算式就是
你能从以上几个算式中发现有理数加法的运算法则吗?
有理数加法法则
(1)、同号的两数相加,取 的符号,并把 相加.
(2).绝对值不相等的异号两数相加,取 的加数的符号,并用较大的绝对值 较小的绝对值. 互为相反数的两个数相加得 .
注意法则的应用,尤其是和的符号的确定!
(3)、一个数同0相加,仍得 。
三、 应用探究
例1 计算(能完成吗,先自己动动手吧!)
(-3)+(-9); (2)(-4·7)+3·9.
例2 足球循环赛中,
红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算各队的净胜球数。
解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数。
三场比赛中,红队共进4球,失2球,净胜球数为
(+4)+(—2)=+(4—2)=2;
黄队共进2球,失4球,净胜球数为
(+2)+(—4)= —(4—2)= ( );蓝队共进( )球,失( )球,净胜球数为( )=( )。
3、课堂练习1.填空: 练习2. P18第1、2题
(1)(-3)+(-5)= ; (2)3+(-5)= ;
(3)5+(-3)= ; (4)7+(-7)= ;
(5)8+(-1)= ; (6)(-8)+1 = ;
(7)(-6)+0 = ; (8)0+(-2) = ;
四、谈谈你这堂课的收获,自己作个总结
五、作业
1、P24 1 P26 7
2、计算:
(1)(-13)+(-18); (2)20+(-14);
(3)1.7 + 2.8 ; (4)2.3 + (-3.1);
(5)(-)+(-); (6)1+(-1.5);
(7)(-3.04)+ 6 ; (8)+(-).
3.判断题:
(1)两个负数的和一定是负数;
(2)绝对值相等的两个数的和等于零;
(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;
(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数.
4.当a = -1.6,b = 2.4时,求a+b和a+(-b)的值.
5.已知│a│= 8,│b│= 2.
(1)当a、b同号时,求a+b的值;
(2)当a、b异号时,求a+b的值.
教学后记:
1.3 有理数的加法(2) 授课时间:_________ 总第 个教案
教学目标:
1、进一步掌握并能熟练应用有理数加法法则进行有理数加法运算.
2、掌握加法运算律并理解其在加法中的作用.
3、培养观察、思维和简单的推理能力.
学习重点:如何运用加法运算定律简化运算
学习难点:灵活运用加法运算定律
教学方法:引导、探究、归纳
教学过程
一、学前准备
1、想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母表示写在下面: 、
2、计算 30 +(-20), (-20)+30.
[ 8 +(-5)] +(-4), 8 + [(-5)]+(-4)].
思考:观察上面的式子与计算结果,你有什么发现?
二、探究归纳
1、引导归纳
请说说你发现的规律
2、自己换几个数字验证一下,还有上面的规律吗
3、由上可以知道,小学学习的加法交换律、结合律在有理数范围内同样适应,即:两个数相加,交换加数的位置,和 .式子表示为
三个数相加,先把前两个数相加,或者先把后两个数相加,和
用式子表示为
想想看,式子中的字母可以是哪些数?
三、定律应用
1、例1 计算: 1)16 +(-25)+ 24 +(-35)
2)(—2.48)+(+4.33)+(—7.52)+(—4.33)
2、例2 每袋小麦的标准重量为90千克,10袋小麦称重记录如下:
91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.1
10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?
想一想,你会怎样计算,再把自己的想法与同伴交流一下.
师生共同小结、比较不同解法,
3、练习
1)、P201、2 2)P20实验与探究
四、小结
请说说这堂课学习的体会
五、自我测试
1.计算:
(1)(-7)+ 11 + 3 +(-2); (2)
2、最小的正整数、绝对值最小的数、最大的负整数的和.是
3.绝对值不大于10的数有 个,它们的和是 .
4、填空:
(1)若a>0,b>0,那么a+b 0.
(2)若a<0,b<0,那么a+b 0.
(3)若a>0,b<0,且│a│>│b│那么a+b 0.
(4)若a<0,b>0,且│a│>│b│那么a+b 0.
5.计算:
(1)│-4.4│+(+8)+11+(-0.1);
(2)
4.某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天,共增加多少元?
六、作业
课本P252 、P269、10
教学后记:
1.3 有理数的减法(1) 授课时间:____________总第 个教案
学习目标:
1、经历探索有理数减法法则的过程.理解并掌握有理数减法法则.
2、会正确进行有理数减法运算.
3、体验把减法转化为加法的转化思想.
学习重点:有理数减法法则和运算
学习难点:有理数减法法则的推导
教学方法:引导、探究、归纳
教学过程
一、学前准备
1、世界上最高的山峰珠穆郎玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为 —154米,两处的高度相差多少呢?
试试看,计算的算式应该是 .能算出来吗,画草图试试
2、长春某天的气温是―2°C~3°C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:°C).显然,这天的温差是3―(―2).
想想看,温差到底是多少呢?那么,3―(―2)= .
二、探究新知
1、还记得吗,被减数、减数差之间的关系是:被减数—减数= .
差+减数= .
2、请你与同桌伙伴一起探究、交流:
要计算3―(―2)=?,实际上也就是要求:?+(—2)=3,所以这个数(差)应该是 .也就是3―(―2)=5.
再看看,3+2= .所以3―(―2) 3+2!
由上你有什么发现?请写出来 .
3、换两个式子计算一下,看看上面的结论还成立吗?
—1—(—3)= , —1+3= ,所以—1—(—3) —1+3.
0—(—3)= , 0+3= ,所以0—(—3) 0+3.
4、师生归纳
1)法则:减去一个数等于加上这个数的相反数 2)字母表示:a-b=a+(-b)
三、新知应用
1、例题
例1 计算:
(1) (-3)―(―5); (2)0-7;
(3) 7.2―(―4.8); (4)-3
练习
1、计算:
(1)(-37)-(-47); (2)(-53)-16;
(3)(-210)-87; (4)1.3-(-2.7);
(5); (6)(-2)-(-1);
(7)(-6-6)-7; (18)(1-5)-(2-8).
2.分别求出数轴上下列两点间的距离:
(1)表示数8的点与表示数3的点;
(2)表示数-2的点与表示数-3的点.
教学后记:
1.3 有理数的减法(2) 授课时间:_______总第 个教案
教学目标:
1、理解加减法统一成加法运算的意义.
2、会将有理数的加减混合运算转化为有理数的加法运算.
3、培养学习数学的兴趣,增强学习数学的信心.
学习重点、难点:有理数加减法统一成加法运算
教学方法:讲练相结合
教学过程
一、学前准备
1、一架飞机作特技表演,起飞后的高度变化如下表:
高度的变化
上升4.5千米
下降3.2千米
上升1.1千米
下降1.4千米
记作
+4.5千米
—3.2千米
+1.1千米
—1.4千米
请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了 千米.
2、你是怎么算出来的,方法是
二、探究新知
1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!
2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导.
3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为 .再把加号记在脑子里,省略不写
如:(-20)+(+3)-(-5)-(+7) 有加法也有减法
=(-20)+(+3)+(+5)+(-7) 先把减法转化为加法
= -20+3+5-7 再把加号记在脑子里,省略不写
可以读作:“负20、正3、正5、负7的 ”或者“负20加3加5减7”.
4、师生完整写出解题过程
三、解决问题
1、解决引例中的问题,再比较前面的方法,你的感觉是
2、例题:计算-4.4-(-4)-(+2)+(-2)+12.4
3、练习:计算 1)(—7)—(+5)+(—4)—(—10)
2)
三、巩固
1、小结:说说这节课的收获
2、P241、2
3、计算
1)27—18+(—7)—32 2)
四、作业
1、P25 5 2、P26第8题、14题
教学后记:
1.4 有理数的乘法(1) 授课时间:_______总第 个教案
学习目标:
1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算
2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力.
3、培养语言表达能力.调动学习积极性,培养学习数学的兴趣.
学习重点:有理数乘法
学习难点:法则推导
教学方法:引导、探究、归纳与练习相结合
教学过程
一、学前准备
一只蜗牛沿直线L爬行,
它现在的位置恰好在点O上.
我们规定:向左为负,向右为正,现在前为负,现在后为正
看看它以相同速度沿不同方向运动后的情况吧
二、探究新知
1、接上问题 (1)如果它以每分2cm的速度向右爬行,3分钟后它在什么位置?
可以表示为 .
(2) 如果它以每分2cm的速度向左爬行,3分钟后它在什么位置?
可以表示为
(3) 如果它以每分2cm的速度向右爬行,3分钟前它在什么位置?
可以表示为
(4)如果它以每分2cm的速度向左爬行,3分钟前它在什么位置?
可以表示为
由上可知: (1) 2×3 = ; (2)(-2)×3 = ;
(3)(+2)×(-3)= ; (4)(-2)×(-3)= ;
(5)两个数相乘,一个数是0时,结果为0
展开阅读全文