资源描述
四边形综合中档偏上题(高于中考难度)
一.解答题(共13小题)
1.(2016•濉溪县二模)如图,正方形ABCD边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.
(1)求证:∠HEA=∠CGF;
(2)当AH=DG=2时,求证:菱形EFGH为正方形;
(3)设AH=x,DG=2x,△FCG的面积为y,试求y的最大值.
2.(2016•亭湖区一模)【发现证明】
(1)如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图1证明上述结论.
【类比引申】
(2)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,∠EAF=45°,连接EF,请直接写出EF、BE、DF之间的数量关系,不需证明;
【联想拓展】
(3)如图3,如图,∠BAC=90°,AB=AC,点E、F在边BC上,且∠EAF=45°,若BE=1,CF=2,求EF的长.
3.(2016•安徽模拟)(1)如图,将正方形ABCD与正方形ECGF(CE<AB)拼接在一起,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试证明:DM=ME;
(2)如图2,若将正方形CEFG绕着顶点C逆时针旋转45°,其他条件不变,那么(1)中的结论是否成立?若成立请说明理由,若不成立请直接写出你发现的结论;
(3)若将正方形CEFG由图1中的位置绕着顶点C逆时针旋转90°,其他条件不变,请你在图3中画出完整的旋转后的图形,并判定(1)中的结论是否成立.
4.(2016•泰州一模)已知△ABC为边长为6的等边三角形,D、E分别在边BC、AC上,且CD=CE=x,连接
DE并延长至点F,使EF=AE,连接AF、CF.
(1)求证:△AEF为等边三角形;
(2)求证:四边形ABDF是平行四边形;
(3)记△CEF的面积为S,
①求S与x的函数关系式;
②当S有最大值时,判断CF与BC的位置关系,并说明理由.
5.(2016春•丹阳市校级期中)探究问题:
(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD﹣∠EAF=90°﹣45°=45°.∵∠1=∠2,∴∠1+∠3=45°.即∠GAF=∠ .又AG=AE,AF=AF∴△GAF≌ .∴ =EF,故DE+BF=EF.
(2)方法迁移:
如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
(3)问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=∠DAB,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).
6.(2015•广西自主招生)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:
(1)当t为何值时,四边形APFD是平行四边形?
(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.
7.(2014春•云霄县校级期中)如图:在长方形ABCD中,∠B=90°点E在BC边上,过E作EF⊥AC于F,
(1)如图1:当BE=EC=3,AB=8时,求EF的长.
(2)如图2:若BG=EG,求证:AG=BG.
(3)如图3:若BG=EG=FG=BF,求:的值.
8.(2013•岳阳)某数学兴趣小组开展了一次课外活动,过程如下:如图1,正方形ABCD中,AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.
(1)求证:DP=DQ;
(2)如图2,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;
(3)如图3,固定三角板直角顶点在D点不动,转动三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DE交BC延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出△DEP的面积.
9.(2012•盘锦)如图1,正方形ABCD中,点E、F分别在边DC、AD上,且AE⊥BF于G.
(1)求证:BF=AE;
(2)如图2,当点E在DC延长线上,点F在AD延长线上时,(1)中结论是否成立?(直接写结论)
(3)在图2中,若点M、N、P、Q分别为四边形AFEB四条边AF、EF、EB、AB的中点,且AF:AD=4:3,求S四边形MNPQ:S正方形ABCD.
10.(2015•长春)在矩形ABCD中,已知AD>AB.在边AD上取点E,使AE=AB,连结CE,过点E作EF⊥CE,与边AB或其延长线交于点F.
猜想:如图①,当点F在边AB上时,线段AF与DE的大小关系为 .
探究:如图②,当点F在边AB的延长线上时,EF与边BC交于点G.判断线段AF与DE的大小关系,并加以证明.
应用:如图②,若AB=2,AD=5,利用探究得到的结论,求线段BG的长.
11.(2012•辽阳)已知:在△PAB的边PA、PB上分别取点C、D,连接CD使CD∥AB.将△PCD绕点P按逆时针方向旋转得到△PC′D′(∠APC′<∠APB),连接AC′、BD′.
(1)如图1,若∠APB=90°,PA=PB,求证:AC′=BD′;AC′⊥BD′.
(2)在图1中,连接AD′、BC′,分别取AB、AD′、C′D′、BC′的中点E、F、G、H,顺次连接E、F、G、H得到四边形EFGH.请判断四边形EFGH的形状,并说明理由.
(3)①如图2,若改变(1)中∠APB的大小,使0°<∠APB<90°,其他条件不变,重复(2)中操作.请你直接判断四边形EFGH的形状.
②如图3,若改变(1)中PA、PB的大小关系,使PA<PB,其他条件不变,重复(2)中操作,请你直接判断是四边形EFGH的形状.
12.(2014•青海)请你认真阅读下面的小探究系列,完成所提出的问题.
(1)如图1,将角尺放在正方形ABCD上,使角尺的直角顶点E与正方形ABCD的顶点D重合,角尺的一边交CB于点F,将另一边交BA的延长线于点G.求证:EF=EG.
(2)如图2,移动角尺,使角尺的顶点E始终在正方形ABCD的对角线BD上,其余条件不变,请你思考后直接回答EF和EG的数量关系:EF EG(用“=”或“≠”填空)
(3)运用(1)(2)解答中所积累的活动经验和数学知识,完成下题:如图3,将(2)中的“正方形ABCD”改成“矩形ABCD”,使角尺的一边经过点A(即点G、A重合),其余条件不变,若AB=4,BG=3,求的值.
13.(2014•潍坊)如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.
(1)求证:AE⊥BF;
(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin∠BQP的值;
(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.
四边形综合中档偏上题(高于中考难度)
参考答案与试题解析
一.解答题(共13小题)
1.(2016•濉溪县二模)如图,正方形ABCD边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.
(1)求证:∠HEA=∠CGF;
(2)当AH=DG=2时,求证:菱形EFGH为正方形;
(3)设AH=x,DG=2x,△FCG的面积为y,试求y的最大值.
【解答】(1)证明:过F作FM⊥CD,垂足为M,连接GE,
∵CD∥AB,
∴∠AEG=∠MGE,
∵GF∥HE,
∴∠HEG=∠FGE,
∴∠AEH=∠FGM;
(2)证明:在△HDG和△AEH中,
∵四边形ABCD是正方形,
∴∠D=∠A=90°,
∵四边形EFGH是菱形,
∴HG=HE,
在Rt△HDG和△AEH中,
,
∴Rt△HDG≌△AEH(HL),
∴∠DHG=∠AEH,
∴∠DHG+∠AHE=90°
∴∠GHE=90°,
∴菱形EFGH为正方形;
(3)解:过F作FM⊥CD于M,
在△AHE与△MFG中,,
∴△AHE≌△MFG,
∴MF=AH=x,
∵DG=2x,
∴CG=6﹣2x,
∴y=CG•FM=•x•(6﹣2x)=﹣(x﹣)2+,
∵a=﹣1<0,∴当x=时,y最大=.
2.(2016•亭湖区一模)【发现证明】
(1)如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图1证明上述结论.
【类比引申】
(2)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,∠EAF=45°,连接EF,请直接写出EF、BE、DF之间的数量关系,不需证明;
【联想拓展】
(3)如图3,如图,∠BAC=90°,AB=AC,点E、F在边BC上,且∠EAF=45°,若BE=1,CF=2,求EF的长.
【解答】解:(1)∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线,
∴∠DAG=∠BAE,AE=AG,
∴∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90°﹣45°=45°=∠EAF,即∠EAF=∠FAG.
在△EAF和△GAF中,
,
∴△AFG≌△AFE.
∴EF=FG.
∴EF=DF+DG=DF+BE,即EF=BE+DF;
(2)DF=EF+BE.
理由:如图2所示.
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,
∵∠ADC=∠ABE=90°,
∴点C、D、G在一条直线上.
∴EB=DG,AE=AG,∠EAB=∠GAD.
又∵∠BAG+∠GAD=90°,
∴∠EAG=∠BAD=90°.
∵∠EAF=45°,
∴∠FAG=∠EAG﹣∠EAF=90°﹣45°=45°.
∴∠EAF=∠GAF.
在△EAF和△GAF中,
,
∴△EAF≌△GAF.
∴EF=FG.
∵FD=FG+DG,
∴DF=EF+BE.
(3)∵∠BAC=90°,AB=AC,
∴将△ABE绕点A顺时针旋转90°得△ACG,
连FG,如图3,
∴AG=AE,CG=BE,∠1=∠B,∠EAG=90°,
∴∠FCG=∠ACB+∠1=∠ACB+∠B=90°,
∴FG2=FC2+CG2=BE2+FC2;
又∵∠EAF=45°,而∠EAG=90°,
∴∠GAF=90°﹣45°=45°,
在△AGF与△AEF中,,
∴△AGF≌△AEF,
∴FG=EF,
∴EF2=BE2+FC2=12+22=5.
∴EF=.
3.(2016•安徽模拟)(1)如图,将正方形ABCD与正方形ECGF(CE<AB)拼接在一起,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试证明:DM=ME;
(2)如图2,若将正方形CEFG绕着顶点C逆时针旋转45°,其他条件不变,那么(1)中的结论是否成立?若成立请说明理由,若不成立请直接写出你发现的结论;
(3)若将正方形CEFG由图1中的位置绕着顶点C逆时针旋转90°,其他条件不变,请你在图3中画出完整的旋转后的图形,并判定(1)中的结论是否成立.
【解答】解:(1)如图1,延长EM交AD于H,
∵AD∥EF,
∴∠EFM=∠HAM,
在△FME和△AMH中,
,
∴△FME≌△AMH,
∴HM=EM,
∵∠HDE=90°,HM=EM,
∴DM=ME;
(2)如图2,连接AE,
∵四边形ABCD和四边形ECGF是正方形,
∴∠FCE=45°,∠CAD=45°,
∴点A、E、C在同一条直线上,
∵∠ADF=90°,∠AEF=90°,M为AF的中点,
∴DM=AF,EM=AF,
∴DM=ME;
(3)如图3,是画出的完整的旋转后的图形,
连接CF,MG,作MN⊥CD于N,
在△ECM和△GCM中,
,
∴△ECM≌△GCM,
∴ME=MG,
∵M为AF的中点,FG∥MN∥AD,
∴GN=ND,又ME=MG,
∴MD=MG,
∴MD=ME,
∴(1)中的结论成立.
4.(2016•泰州一模)已知△ABC为边长为6的等边三角形,D、E分别在边BC、AC上,且CD=CE=x,连接
DE并延长至点F,使EF=AE,连接AF、CF.
(1)求证:△AEF为等边三角形;
(2)求证:四边形ABDF是平行四边形;
(3)记△CEF的面积为S,
①求S与x的函数关系式;
②当S有最大值时,判断CF与BC的位置关系,并说明理由.
【解答】(1)证明:∵△ABC为等边三角形,
∴AB=AC=BC,∠ACB=60°,
∵CD=CE,
∴△CDE为等边三角形,
∴∠CED=60°,
∠AEF=60°,又AE=EF,
∴△AEF为等边三角形;
(2)∵∠FAC=60°,
∴∠FAC=∠ACB=60°,
∴AF∥BC,
∵∠CED=∠CAB=60°,
∴AB∥BF,
∴四边形ABDF为平行四边形;
(3)①作AH⊥BC于H,
∵△ABC为边长为6的等边三角形,
∴AH=3,
∴S△CDF=×CD×AH=x,
∵△CDE为等边三角形,CD=x,
∴S△CDE=x2,
∴△CEF的面积S=x﹣x2;
②CF⊥BC.
x=﹣=3时,S最大,
∴CD=CE=3,
∵△CDE为等边三角形,
∴DE=CD=CE=3,
∵E为AC的中点,
∴AE=CE=3
∴AE=EF=3
∴CE=DE=EF=3,
∴∠CDE=∠ECD,
∠ECF=∠EFC,
∵∠CDE+∠ECD+∠CCF+∠EFC=180°,
∴2∠ECD+2∠ECF=180°,
∴∠ECD+∠ECF=90°,即∠DCF=90°,
∴CF⊥BC.
5.(2016春•丹阳市校级期中)探究问题:
(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD﹣∠EAF=90°﹣45°=45°.∵∠1=∠2,∴∠1+∠3=45°.即∠GAF=∠ EAF .又AG=AE,AF=AF∴△GAF≌ △EAF .∴ GF =EF,故DE+BF=EF.
(2)方法迁移:
如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
(3)问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=∠DAB,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).
【解答】解:(1)AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°,
∴∠2+∠3=∠BAD﹣∠EAF=90°﹣45°=45°,
∵∠1=∠2,∴∠1+∠3=45°.即∠GAF=∠EAF.
在△GAF和△EAF中,
,
∴△GAF≌△EAF,
∴GF=EF,
故DE+BF=EF;
故答案为:EAF;△EAF;GF;
(2)DE+BF=EF,证明如下:
假设∠BAD的度数为m,将△ADE绕点A顺时针旋转m°得到△ABG,此时AB与AD重合,
由旋转可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
∴点G,B,F在同一条直线上,
∵∠EAF=m°,
∴∠2+∠3=∠BAD﹣∠EAF,
即m°﹣m°=m°,
∵∠1=∠2,
∴∠1+∠3=m°,
即∠GAF=∠EAF,
又∵AG=AE,AF=AF,
∴△GAF≌△EAF(SAS),
∴GF=EF,
又∵GF=BG+BF=DE+BF,
∴DE+BF=EF;
(3)由(2)的结论可知,当∠B与∠D互补时,可使得DE+BF=EF.
6.(2015•广西自主招生)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:
(1)当t为何值时,四边形APFD是平行四边形?
(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.
【解答】解:(1)∵四边形ABCD是菱形,
∴AB∥CD,AC⊥BD,OA=OC=AC=6,OB=OD=BD=8.
在Rt△AOB中,AB==10.
∵EF⊥BD,
∴∠FQD=∠COD=90°.
又∵∠FDQ=∠CDO,
∴△DFQ∽△DCO.
∴=.
即=,
∴DF=t.
∵四边形APFD是平行四边形,
∴AP=DF.
即10﹣t=t,
解这个方程,得t=.
∴当t=s时,四边形APFD是平行四边形.
(2)如图1,过点C作CG⊥AB于点G,
∵S菱形ABCD=AB•CG=AC•BD,
即10•CG=×12×16,
∴CG=.
∴S梯形APFD=(AP+DF)•CG
=(10﹣t+t)•=t+48.
∵△DFQ∽△DCO,
∴=.
即=,
∴QF=t.
同理,EQ=t.
∴EF=QF+EQ=t.
∴S△EFD=EF•QD=×t×t=t2.
∴y=(t+48)﹣t2=﹣t2+t+48.
(3)如图2,过点P作PM⊥EF于点M,PN⊥BD于点N,
若S四边形APFE:S菱形ABCD=17:40,
则﹣t2+t+48=×96,
即5t2﹣8t﹣48=0,
解这个方程,得t1=4,t2=﹣(舍去)
过点P作PM⊥EF于点M,PN⊥BD于点N,
当t=4时,
∵△PBN∽△ABO,
∴==,即==.
∴PN=,BN=.
∴EM=EQ﹣MQ=3﹣=.
PM=BD﹣BN﹣DQ=16﹣﹣4=.
在Rt△PME中,
PE===(cm).
7.(2014春•云霄县校级期中)如图:在长方形ABCD中,∠B=90°点E在BC边上,过E作EF⊥AC于F,
(1)如图1:当BE=EC=3,AB=8时,求EF的长.
(2)如图2:若BG=EG,求证:AG=BG.
(3)如图3:若BG=EG=FG=BF,求:的值.
【解答】(1)解:∵BE=EC=3
∴BC=6
在Rt△ABC中
∵AB=8
∴AC=10
∴
∵
∴EF=2.4
(2)证明:∵GB=GE
∴∠GBE=GEB
在Rt△ABE中
∠BAG与∠GEB互余
∵∠ABE=90°
∴∠GBA与∠GBE互余
∴∠GAB=∠GBA
∴AG=BG
(3)解:∵BG=EG
∴AG=BG在Rt△ABC中
∵BG=EG=FG=BF
∴AG=BG=EG=FG=EF
∴A、B、E、F四点共圆且△BGF为等边三角形
∴∠BGF=60°
∴
在Rt△ABC中
∵(如果没接触过三角函数,可以用“在含30°角的直角三角形中,30°所对的直角边等于斜边的一半”,也可以得出结论)
∴
8.(2013•岳阳)某数学兴趣小组开展了一次课外活动,过程如下:如图1,正方形ABCD中,AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.
(1)求证:DP=DQ;
(2)如图2,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;
(3)如图3,固定三角板直角顶点在D点不动,转动三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DE交BC延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出△DEP的面积.
【解答】(1)证明:∵∠ADC=∠PDQ=90°,
∴∠ADP=∠CDQ.
在△ADP与△CDQ中,
∴△ADP≌△CDQ(ASA),
∴DP=DQ.
(2)猜测:PE=QE.
证明:由(1)可知,DP=DQ.
在△DEP与△DEQ中,
∴△DEP≌△DEQ(SAS),
∴PE=QE.
(3)解:∵AB:AP=3:4,AB=6,
∴AP=8,BP=2.
与(1)同理,可以证明△ADP≌△CDQ,
∴CQ=AP=8.
与(2)同理,可以证明△DEP≌△DEQ,
∴PE=QE.
设QE=PE=x,则BE=BC+CQ﹣QE=14﹣x.
在Rt△BPE中,由勾股定理得:BP2+BE2=PE2,
即:22+(14﹣x)2=x2,
解得:x=,即QE=.
∴S△DEQ=QE•CD=××6=.
∵△DEP≌△DEQ,
∴S△DEP=S△DEQ=.
9.(2012•盘锦)如图1,正方形ABCD中,点E、F分别在边DC、AD上,且AE⊥BF于G.
(1)求证:BF=AE;
(2)如图2,当点E在DC延长线上,点F在AD延长线上时,(1)中结论是否成立?(直接写结论)
(3)在图2中,若点M、N、P、Q分别为四边形AFEB四条边AF、EF、EB、AB的中点,且AF:AD=4:3,求S四边形MNPQ:S正方形ABCD.
【解答】解:(1)∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠DAB=∠ADC=90°.
∴∠DAE+∠BAE=90°.
∵AE⊥BF,
∴∠AGB=90°,
∴∠GAB+∠GBA=90°,
∴∠DAE=∠ABG.
在△ABF和△DAE中,
,
∴△ABF≌△DAE(ASA),
∴BF=AE;
(2)结论成立 即AE=BF.
理由:∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠DAB=∠ADC=90°.
∴∠DAE+∠BAE=90°.
∵AE⊥BF,
∴∠AGB=90°,
∴∠GAB+∠GBA=90°,
∴∠DAE=∠ABG.
在△ABF和△DAE中,
,
∴△ABF≌△DAE(ASA),
∴BF=AE;
(3)∵AF:AD=4:3,设AF=4a,AD=3a,
∴DF=a.
∵△ABF≌△DAE,
∴AF=DE,
∴AF﹣AD=DE﹣DC,
∴DF=CE,
∴CE=a.
∵点M、N、P、Q分别为四边形AFEB四条边AF、EF、EB、AB的中点,
∴MN是△AEF的中位线,MQ是△ABF的中位线,
∴MN=AE,MN∥AE,MQ=BF,MQ∥BF.
∴MN=MQ.∠MNP=∠NPQ=∠PQM=90°,
∴四边形MNPQ是正方形.
在Rt△ABF中,由勾股定理,得
BF=5a.
∴MN=MQ=.
∴S四边形MNPQ=.
∵S正方形ABCD=9a2,
∴S四边形MNPQ:S正方形ABCD=:9a2=25:36.
答:S四边形MNPQ:S正方形ABCD=25:36.
10.(2015•长春)在矩形ABCD中,已知AD>AB.在边AD上取点E,使AE=AB,连结CE,过点E作EF⊥CE,与边AB或其延长线交于点F.
猜想:如图①,当点F在边AB上时,线段AF与DE的大小关系为 AF=DE .
探究:如图②,当点F在边AB的延长线上时,EF与边BC交于点G.判断线段AF与DE的大小关系,并加以证明.
应用:如图②,若AB=2,AD=5,利用探究得到的结论,求线段BG的长.
【解答】解:①AF=DE;
②AF=DE,
证明:∵∠A=∠FEC=∠D=90°,
∴∠AEF=∠DCE,
在△AEF和△DCE中,
,
∴△AEF≌△DCE,
∴AF=DE.
③∵△AEF≌△DCE,
∴AE=CD=AB=2,AF=DE=3,FB=FA﹣AB=1,
∵BG∥AD,
∴=,
∴BG=.
11.(2012•辽阳)已知:在△PAB的边PA、PB上分别取点C、D,连接CD使CD∥AB.将△PCD绕点P按逆时针方向旋转得到△PC′D′(∠APC′<∠APB),连接AC′、BD′.
(1)如图1,若∠APB=90°,PA=PB,求证:AC′=BD′;AC′⊥BD′.
(2)在图1中,连接AD′、BC′,分别取AB、AD′、C′D′、BC′的中点E、F、G、H,顺次连接E、F、G、H得到四边形EFGH.请判断四边形EFGH的形状,并说明理由.
(3)①如图2,若改变(1)中∠APB的大小,使0°<∠APB<90°,其他条件不变,重复(2)中操作.请你直接判断四边形EFGH的形状.
②如图3,若改变(1)中PA、PB的大小关系,使PA<PB,其他条件不变,重复(2)中操作,请你直接判断是四边形EFGH的形状.
【解答】解:(1)延长AC′交BD′于点M,
∵∠APB=90°,
∴∠PAB+∠PBA=90°.
∵PA=PB,
∴∠PAB=∠PBA.
∵CD∥AB,
∴∠PCD=∠PAB,∠PBA=∠PDC,
∴∠PCD=∠PDC,
∴PC=PD.
∵将△PCD绕点P按逆时针方向旋转得到△PC′D′,
∴∠APB=∠C′PD′,PC′=PC,PD′=PD.
∴∠APB﹣∠C′PB=∠C′PD′﹣∠C′PB,PC′=PD′.
∴∠APC′=∠BPD′.
在△AC′P和△BD′P中,
,
∴△AC′P≌△BD′P(SAS),
∴AC′=BD′,∠PAC′=∠PBD′.
∵∠PAC′+∠BAC′+∠ABP=90°,
∴∠BAC′+∠ABP+∠PBD′=90°,
∴∠MAB+∠ABM=90°,
∴∠AMB=90°,
∴AC′⊥BD′.
∴AC′=BD′;AC′⊥BD′;
(2)四边形EFGH是正方形.
∵点E、F、G、H分别是AB、AD′、C′D′、BC′的中点,
∴EF=GH=BD′,GF=EH=AC′,EF∥BD′,EH∥AM,
∴∠AEF=∠ABM,∠BEH=∠BAM,
∴∠AEF+∠BEH=90°,
∴∠FEH=90°
∵AC′=BD′,
∴EF=FG=GH=HE,
∴四边形EFGH是正方形;
(3)①四边形EFGH是菱形.
∵PA=PB,
∴∠PAB=∠PBA.
∵CD∥AB,
∴∠PCD=∠PAB,∠PBA=∠PDC,
∴∠PCD=∠PDC,
∴PC=PD.
∵将△PCD绕点P按逆时针方向旋转得到△PC′D′,
∴∠APB=∠C′PD′,PC′=PC,PD′=PD.
∴∠APB﹣∠C′PB=∠C′PD′﹣∠C′PB,PC′=PD′.
∴∠APC′=∠BPD′.
在△AC′P和△BD′P中,
,
∴△AC′P≌△BD′P(SAS),
∴AC′=BD′.
∵点E、F、G、H分别是AB、AD′、C′D′、BC′的中点,
∴EF=GH=BD′,GF=EH=AC′,
∵AC′=BD′,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形;
②四边形EFGH是矩形.
如图3,延长AC′交BD′于点M,
∵将△PCD绕点P按逆时针方向旋转得到△PC′D′,
∴∠APB=∠C′PD′,PC′=PC,PD′=PD.
∴∠APB﹣∠C′PB=∠C′PD′﹣∠C′PB,.
∴∠APC′=∠BPD′.
∵CD∥AB,
∴,
∴.
∴△AC′P∽△BD′P,
∴∠PAC′=∠PBD′.
∵∠APB=90°,
∴∠PAC′+∠BAC′+∠ABP=90°,
∴∠BAC′+∠ABP+∠PBD′=90°,
∴∠MAB+∠ABM=90°.
∵点E、F、G、H分别是AB、AD′、C′D′、BC′的中点,
∴EF=GH=BD′,GF=EH=AC′,EF∥BD′,EH∥AM,
∴四边形EFGH是平行四边形.∠AEF=∠ABM,∠BEH=∠BAM,
∴∠AEF+∠BEH=90°,
∴∠FEH=90°,
∴平行四边形EFGH是矩形.
12.(2014•青海)请你认真阅读下面的小探究系列,完成所提出的问题.
(1)如图1,将角尺放在正方形ABCD上,使角尺的直角顶点E与正方形ABCD的顶点D重合,角尺的一边交CB于点F,将另一边交BA的延长线于点G.求证:EF=EG.
(2)如图2,移动角尺,使角尺的顶点E始终在正方形ABCD的对角线BD上,其余条件不变,请你思考后直接回答EF和EG的数量关系:EF = EG(用“=”或“≠”填空)
(3)运用(1)(2)解答中所积累的活动经验和数学知识,完成下题:如图3,将(2)中的“正方形ABCD”改成“矩形ABCD”,使角尺的一边经过点A(即点G、A重合),其余条件不变,若AB=4,BG=3,求的值.
【解答】解:(1)证明:∵∠AEF+∠AEG=90°,∠AEF+∠CEF=90°,
∴∠AEG=∠CEF,
又∵∠GAE=∠C=90°,EA=EC,
∴△EAG≌△ECF(ASA)
∴EG=EF
(2)EF=EG;
过点E作EM⊥AB于点M,作EN⊥BC于点N,如图2所示,
则∠MEN=90°,EM=EN,
∴∠GEM=∠FEN,
又因为∠EMG=∠ENF=90°,
∴△EMG≌△ENF
∴EF=EG.
故答案为:=.
(3)过点E作EM⊥AB于点M,作EN⊥BC于点N,如图3所示:
则∠MEN=90°,EM∥BC,EN∥AB,
∴,
∴,
又∵∠GEM+∠MEF=90°,∠FEN+∠MEF=90°,
∴∠FEN=∠GEM,
∴Rt△GME∽Rt△FNE,
∴
13.(2014•潍坊)如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.
(1)求证:AE⊥BF;
(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin∠BQP的值;
(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.
【解答】(1)证明:如图1,
∵E,F分别是正方形ABCD边BC,CD的中点,
∴CF=BE,
在Rt△ABE和Rt△BCF中,
∴Rt△ABE≌Rt△BCF(SAS),
∠BAE=∠CBF,
又∵∠BAE+∠BEA=90°,
∴∠CBF+∠BEA=90°,
∴∠BGE=90°,
∴AE⊥BF.
(2)解:如图2,根据题意得,
FP=FC,∠PFB=∠BFC,∠FPB=90°
∵CD∥AB,
∴∠CFB=∠ABF,
∴∠ABF=∠PFB,
∴QF=QB,
令PF=k(k>0),则PB=2k
在Rt△BPQ中,设QB=x,
∴x2=(x﹣k)2+4k2,
∴x=,
∴sin∠BQP===.
(3)解:∵正方形ABCD的面积为4,
∴边长为2,
∵∠BAE=∠EAM,AE⊥BF,
∴AN=AB=2,
∵∠AHM=90°,
∴GN∥HM,
∴=,
∴=,
∴S△AGN=,
∴S四边形GHMN=S△AHM﹣S△AGN=1﹣=,
∴四边形GHMN的面积是.
第23页(共23页)
展开阅读全文