资源描述
污水处理中各类生物处理法的比较
1.1 二级生物处理工艺的选择
近年来城市污水处理技术发展很快,类别也很多,在生物处理法中,有活性污泥法和生物膜法两大类。
1.1.1 活性污泥法
应用于城市污水厂的活性污泥法污水处理工艺主要有三个系列:①氧化沟系列;②A2/O系列;③SBR系列。
各个系列不断地发展、改进,形成了目前比较典型的工艺有:CARROUSEL-2000氧化沟工艺、双沟式DE氧化沟工艺、三沟式T型氧化沟工艺、ORBAL氧化沟工艺、A2/O微孔曝气氧化沟工艺、A/O工艺、改良A2/O工艺、UCT工艺、改良UCT工艺、倒置A2/O工艺、CAST工艺、SBR工艺、CASS工艺、MSBR工艺等。
1、氧化沟工艺系列
目前在国内外较为流行的氧化沟有:卡罗塞尔氧化沟、奥伯尔氧化沟、双沟式氧化沟、三沟式氧化沟、A/A/O微孔曝气氧化沟。
氧化沟是活性污泥法的一种改进型,具有除磷脱氮功能,其曝气池为封闭的沟渠,废水和活性污泥的混合液在其中不断循环流动,因此氧化沟又名“连续循环曝气法”。过去由于其曝气装置动力小,使池深及充氧能力受到限制,导致占地面积大,土建费用高,使其推广及运用受到影响。近十年来由于曝气装置的不断改进、完善及池形的合理设计,弥补了氧化沟过去的缺点。
1)卡罗塞尔氧化沟
卡罗塞尔氧化沟是荷兰DHV公司开发的。该工艺在曝气渠道端部装有低速表面曝气机。在曝气渠内用隔板分格,构成连续渠道。表曝机把水流推向曝气区,水流连续经过几个曝气区后经堰口排出。为了保证沟中流速,曝气渠的几何尺寸和表曝机的设计是至关重要的,DHV公司往往要通过水力模型才能确定工程设计。最近DHV公司又开发了卡罗塞尔2000型,把厌氧/缺氧/好氧与氧化沟循环式曝气渠巧妙的结合起来,改变了原调节性差,除磷脱氮效果低的缺点,但水力设计更为复杂。卡鲁塞尔氧化沟的缺点是池深较浅,一般为4.0m,占地面积大,土建费用高。也有将卡罗塞尔氧化沟池深设计为6m或更深的情况,但需采用潜水推流器提供额外动力。
2)DE型氧化沟和T型氧化沟
双沟式(DE型)氧化沟和三沟式(T型)氧化沟是丹麦克鲁格公司开发的。DE型氧化沟为双沟组成,氧化沟与二沉池分建,有独立的污泥回流系统,DE型氧化沟可按除磷脱氮(或脱氮)等多种工艺运行。双沟式氧化沟是由两个容积相同,交替进行的曝气沟组成。沟内设有转刷和水下搅拌器,实现硝化过程,由于周期性的变换进、出水方向(需启闭进出水堰门)和变换转刷和水下搅拌器的运行状态,因此必须通过计算机控制操作,对自控要求较高。三沟式氧化沟集曝气沉淀于一体,工艺更为简单。三沟交替进水,两外沟交替出水,两外沟分别作为曝气或沉淀交替运行,不需设二沉池及污泥回流设备,同DE型氧化沟相同,需要的自动化程度高。由于这两种氧化沟采用转刷曝气,池深较浅,占地面积大。双沟式和三沟式由于各沟交替进行,明显的缺点是设备利用率低,三沟式的设备利用率只有58%,设备配置多,使一次性设备投资大。
3)奥伯尔氧化沟
奥伯尔氧化沟是氧化沟类型中的重要形式,此法起初是由南非的休斯曼构想,南非国家水研究所研究和发展的,该技术转让给美国的Envirex公司后得到的不断的改进及推广应用。
奥伯尔氧化沟是椭圆型的,通常有三条同心曝气渠道(也有两条或更多条渠道)。污水通过淹没式进水口从外沟进入,顺序流入下一条渠道,由内沟道排出。
奥伯尔氧化沟具有同时硝化、反硝化的特性,在氧化沟前面增加一座厌氧选择池,便构成了生物除磷脱氮系统。污水和回流污泥首先进入厌氧选择池,停留时间约1小时,在厌氧池中完成磷的释放,并改善污泥的沉降性,然后混合液进入氧化沟进行硝化、反硝化,实现除磷脱氮。
奥伯尔氧化沟的缺点是池深较浅,一般为4.3m左右,占地面积较大,因该工艺池型为椭圆型,对地块的有效利用较差。
金阳污水处理厂一期工程就是以奥伯尔氧化沟为原型,外增设1条厌氧沟,共4沟,由4条同心环形沟组成。
4)改良型氧化沟
针对卡罗塞尔氧化沟池型专利设备需引进,且表面曝气设备充氧效率总体偏低的缺点,近年来把氧化沟的水力模型原理与微孔鼓风曝气结合产生了“微孔曝气氧化沟”,其核心为“厌氧池+缺氧池+氧化沟+鼓风曝气”,如下图所示。
图8-4 A2/O微孔曝气氧化沟示意图
改良型氧化沟是传统A2/O活性污泥法和氧化沟工艺的有机结合,该工艺是将A2/O工艺中好氧池设计为氧化沟的形式,采用水下曝气加推流的方式,既具有A2/O工艺除磷脱氮的功能,又具有氧化沟循环混合耐冲击负荷的特点,不失为一种优化方式。氧化沟型式的好氧池具有完全混合生物反应池的特点,由于其强大的环流量,对进入原污水的稀释能力强,因而其对水质水量的冲击负荷适应能力较好;这种池型最大特点是将好氧池的推流设施和曝气设施分开,采用水下曝气供氧,既提供了强有力的推流力,又能维持反应池内高的氧转移效率,也可提高好氧池的水深,避免了氧化沟水深浅、占地大的缺点。
它具有鼓风曝气的优点(氧利用率较高),且设备可国产化,价格及维护费用较低,但同时需设鼓风机房,设备较多。
2、A2/O工艺系列
1)传统A2/O工艺
A2/O工艺是一种典型的除磷脱氮工艺,其生物反应池由ANAEROBIC(厌氧)、ANOXIC(缺氧)和OXIC(好氧)三段组成,其典型工艺流程见下图,其特点是厌氧、缺氧和好氧三段功能明确,界线分明,可根据进水条件和出水要求,人为地创造和控制三段的时空比例和运转条件,只要碳源充足(TKN/COD≤0.08或BOD/TKN≥4),便可根据需要达到比较高脱氮率。
图8-5 传统A2/O工艺流程图
常规生物脱氮除磷工艺呈厌氧(A1)/缺氧(A2)/好氧(O)的布置形式。该布置在理论上基于这样一种认识,即:聚磷微生物有效释磷水平的充分与否,对于提高系统的除磷能力具有极端重要的意义,厌氧区在前可以使聚磷微生物优先获得碳源并得以充分释磷。传统A2/O工艺存在在以下三个缺点:①由于厌氧区居前,回流污泥中的硝酸盐对厌氧区产生不利影响;②由于缺氧区位于系统中部,反硝化在碳源分配上居于不利地位,因而影响了系统的脱氮效果;③由于存在内循环,常规工艺系统所排放的剩余污泥中实际只有一少部分经历了完整的放磷、吸磷过程,其余则基本上未经厌氧状态而直接由缺氧区进入好氧区,这对于系统除磷是不利的。
2)改良A2/O工艺
为了解决A2/O工艺的第一个缺点,即由于厌氧区居前,回流污泥中的硝酸盐对厌氧区产生不利影响,改良A2/O工艺在厌氧池之前增设缺氧调节池,改良A2/O工艺工艺流程如下图所示。
图8-6 改良A2/O工艺流程图
来自二沉池的回流污泥和10%左右的进水进入调节池,停留时间为20~30min,微生物利用约10%进水中有机物去除回流硝态氮,消除硝态氮对厌氧池的不利影响,从而保证厌氧池的稳定性,保证除磷效果。
该工艺简便易行,在厌氧池中分出一格作回流污泥反硝化池即可。生产性试验结果表明,该工艺的处理效果与改良的UCT相同甚至优于改良UCT,并节省一个回流系统。
3)UCT工艺
UCT工艺的流程见图8-7所示,该工艺与A2/O工艺的区别在于,回流污泥首先进入缺氧段,而缺氧段部分出流混合液再回至厌氧段。通过这样的修正,可以避免因回流污泥中的NO3-N回流至厌氧段,干扰磷的厌氧释放,而降低磷的去除率。回流污泥带回的NO3-N将在缺氧段中被反硝化。当入流污水的BOD5/TKN或BOD5/T-P较低时,较适用UCT工艺。
图8-7 UCT工艺流程图
4)MUCT工艺
MUCT工艺的流程如图8-8所示,该工艺系在UCT工艺的基础上,将缺氧段一分为二,形成二套独立的内回流。因而,MUCT是UCT的改良工艺。进行这样的改良,与UCT相比有两个优点:一是克服UCT工艺,不易控制缺氧段的停留时间,二是避免控制不当,DO仍会影响厌氧区。
图8-8 MUCT工艺流程图
MUCT缺点主要有:
Ø MUCT工艺比传统A2/O工艺多了一级污泥回流,因此系统的复杂程度和自控要求有所提高,耗能有所增加。
Ø 设两个单独的缺氧池,一座缺氧池专门用于除去外回流带来的硝酸盐,增加了缺氧池体积。
Ø 与A2/O工艺类似,剩余污泥只有一部分经历了完整的放磷、吸磷过程,部分直接经缺氧、好氧后沉淀排出。
Ø 与A2/O工艺类似,反硝化在碳源分配上处于不利地位,影响系统的脱氮效果。
5)倒置A2/O工艺
为了克服上述各工艺过程的缺点,产生了倒置A2/O工艺,工艺流程见图8-9。为避免传统A2/O工艺回流硝酸盐对厌氧池放磷的影响,通过吸收改良A2/O工艺优点,将缺氧池置于厌氧池前面,来自二沉池的回流污泥和30~50%的进水,50~150%的混合液回流均进入缺氧段,停留时间为1~3h。回流污泥和混合液在缺氧池内进行反硝化,去除硝态氧,再进入厌氧段,保证了厌氧池的厌氧状态,强化除磷效果。由于污泥回流至缺氧段,缺氧段污泥浓度较好氧段高出50%。单位池容的反硝化速率明显提高,反硝化作用能够得到有效保证。
再根据不同进水水质,不同季节情况下,生物脱氮和生物除磷所需碳源的变化,调节分配至缺氧段和厌氧段的进水比例,反硝化作用能够得到有效保证,系统中的除磷效果也有保证。
图8-9 倒置A2/O工艺流程图
分点进水倒置A2/O工艺采用矩形的生物池,设缺氧段、厌氧段及好氧段,用隔墙分开,采用推流式。缺氧段、厌氧段设置水下搅拌器,好氧段设微孔曝气系统。为能达到硝化阶段,选择合理的污泥龄。
3、SBR工艺系列
1)SBR工艺
SBR(Sequencing Batch Reactor)即为序批式活性污泥法。随着曝气器设备、自控设备的不断更新和技术水平的提高,SBR工艺广泛地被应用,并且在传统的序批式活性污泥法的基础,发展出多种变形工艺,SBR工艺以其构造简单,操作方便,并通过设置生物选择器有效控制污泥膨胀等优点,广泛应用于城市污水和各种工业废水的处理。
SBR工艺是在一个或多个平行运行、且反应容积可变的池子中,完成生物降解和泥水分离过程。在这一系统中,活性污泥法按照“进水曝气-沉淀-滗水”阶段交替进行。在曝气阶段主要完成生物降解过程,沉淀-滗水阶段完成泥水分离和排出处理出水过程。因此,SBR系统无需设置二沉池,可以省去传统活性污泥法中曝气池和二沉池之间的连接管道。根据活性污泥实际增殖情况,在每一处理循环的最后阶段(滗水阶段)自动排出剩余污泥。SBR工艺可以深度去除有机物(BOD5,COD),并有相当的脱氮效果和一定的生物除磷效果。
SBR工艺每一操作循环由下列四个阶段组成:进水及曝气、沉淀、撇水。各个阶段组成一个循环,并不断重复。循环开始时,由于充水,池子中的水位由某一最低水位开始上升,经过一定时间的曝气和混合后,停止曝气,以使活性污泥进行絮凝并在一个静止的环境中沉淀,在完成沉淀阶段后,由一个移动式滗水器排出已处理的上清液,使水位下降至池子所设定的最低水位。完成上述操作阶段后,系统进入下一循环过程,重复以上操作。
为保持池子中有一个合适的污泥浓度,需要根据产生的污泥量排出相应的剩余污泥。排除剩余污泥一般在沉淀阶段结束后进行,排出的污泥浓度可达10 g/L左右。
(1)生物选择器
SBR在曝气池的前段设置生物选择器,生物选择器按缺氧方式运行,其功能是防止活性污泥膨胀,并创造生物除磷的条件。在选择器中,污水中的溶解性有机物质能通过酶反应机理而迅速去除。选择器区域不曝气,维持缺厌氧状态。在缺氧条件下,进入选择器的污水中的发酵产物能在起始反应阶段迅速被聚磷菌所吸附吸收,并转化成PHB(聚ß羟基丁酸)。在VFA的诱导下,细胞内聚磷菌经水解成正磷酸盐,释放到水溶液中,这一环境条件使聚磷菌在微生物生存竞争中占优势,并得以大量繁殖,从而实现了生物活性的选择性要求和防止了丝状菌繁殖的污泥膨胀问题。污泥回流液中所含有的少量硝酸盐也可在此选择器中得以反硝化,选择器中反硝化量可达整个系统反硝化容量的15%左右。
(2)主反应区
在SBR工艺的主反应区进行曝气供氧,主要完成降解有机物和氨氮的硝化,并可通过调节溶解氧方式(间歇曝气及控制曝气强度进行反硝化,实现脱氮。
(3)污泥回流/剩余污泥排除系统
在主反应区的末端设有污泥泵,污泥通过此污泥泵在曝气阶段不断地从主反应区抽送至选择器中(污泥回流量约为进水流量的20%左右)。安装在池子内的剩余污泥泵在沉淀阶段结束后将工艺过程中产生的剩余污泥排出系统。
(4)滗水装置
在池子的末端设有可升降的滗水器,以排出处理出水。滗水装置及其它操作过程均实行自动控制。滗水器的独特结构可以有效防止池子表面可能产生的浮渣进入滗水器而随出水排出,可进一步保证处理效果。
2)CASS工艺
CASS工艺是循环式活性污泥法(Cyclic Activated Sludge System,CASS)的简称,也被称为CASP(Cyclic Activated Sludge Process)。CASS工艺是Goronszy教授在ICEAS的基础上开发出来的,是SBR工艺的一种新的形式。CASS方法在20世纪70年代开始得到研究和应用。反应器工艺是以生物反应动力学原理及合理的水力条件为基础而开发的一种具有系统组成简单、运行灵活和可靠性好等优良特点的废水处理新工艺,尤其适合于要求脱氮除磷功能的城市污水处理。
CASS工艺实质上为具有除磷脱氮功能的间歇式反应器,在此反应器中进行交替的曝气—不曝气过程的不断重复,将生物反应过程及泥水的分离过程结合在一个池子中完成。因此,它是SBR工艺及ICEAS工艺的一种最新变型。目前已广泛应用于国内外城市污水处理工程。
CASS反应器由三个区域组成:生物选择区、兼氧区和主反应区。生物选择区是设置在CASS前端的小容积区,通常在厌氧或兼氧条件下运行。兼氧区不仅具有辅助厌氧或兼氧条件下运行的生物选择区对进水水质水量变化的缓冲作用,同时还具有促进磷的进一步释放和强化反硝化作用,主反应区则是最终去除有机物的场所。
图8-10所示为CASS工艺的循环过程。
(1生物选择区 2、兼氧区 3、主反应区)
图8-10 CASS工艺的循环操作过程
(1)生物选择区
在循环式活性污泥法工艺中设有生物选择区,生物选择区是设置在CASS前端的小容积区(容积约为反应器总容积的10%),水力停留时间为0.5~1 h,通常在厌氧或兼氧条件下运行。生物选择区的设置是利用活性污泥种群组成动力学的规律,创造合适的絮凝性细菌生长的环境。生物选择区的机理和作用在20世纪70年代和80年代分别由Chudoba和Wanne进行了深入的研究。大量研究结果表明,设计合理的生物选择区可有效地抑制丝状菌的大量繁殖,克服污泥膨胀,提高系统的稳定性。所以选择器的最基本功能是防止产生污泥膨胀。
此外,选择器中还可以比较显著的反硝化作用(回流污泥混合液中通常含有硝态氮),其所去除的氮可占总去除率的20%左右。
(2)兼氧区
CASS反应器中硝化和反硝化过程在曝气阶段同时进行。运行时控制供氧强度以及曝气池中溶解氧浓度,使絮凝体的外周能保证有一个好氧环境进行硝化;同时,由于溶解氧浓度得到控制,氧在污泥絮体内部的渗透传递作用受到限制,而较高的硝酸盐浓度(梯度)则能较好地渗透到絮体的内部,因此在絮体内部能有效地进行反硝化过程。通过污泥回流,将部分硝酸盐氮带入生物选择区和兼氧区中,因此在其中也有部分反硝化功能。另外,在曝气停止后的非曝气阶段中,沉淀污泥床中也存在一定的反硝化作用。
在完全混合反应区之前兼氧区是在厌氧或兼氧条件下运行的,对进水水质水量的变化有缓冲作用,同时还具有促进磷的进一步释放和强化反硝化的作用。其对大分子物质发生水解的作用,对于难降解物质的去除、提高有机物的去除率有一定的促进效果。因为生物除磷的效果很大程度上取决于进水中所含有的易降解基质的含量,在兼氧区中活性污泥通过水解酶分解大量易降解的溶解性基质为挥发酸,这些易降解物质可用于后续的生物除磷过程,对整个系统的生物除磷功能起着非常重要的作用。系统中通过曝气和非曝气阶段使活性污泥不断地经过好氧和厌氧的循环,这些反应条件将有利于聚磷细菌在系统中的生长和累积,因此系统具有生物除磷的功能。根据Goronszy等人的研究,当微生物体内吸附和吸收大量易降解物质而且处在氧化还原电位为+100~-150 mV的交替变化的环境中时,系统具有良好的生物除磷功能。
(3)主反应区
主反应区是最终去除有机底物的主场所。运行过程中,通常将主反应区的曝气强度加以控制,以使反应区内主体溶液处于好氧状态,而活性污泥结构内部则基本处于缺氧状态,溶解氧向污泥絮体内的传递受到限制,而硝态氮由污泥内向主体溶液的传递不受限制,从而使主反应区中同时发生有机污染物的降解以及同步硝化和反硝化作用。该区主要完成降解有机物和硝化/反硝化过程。
(4)污泥回流/排除剩余污泥系统
CASS反应器设置了三个反应区,在池子的末端设有潜水泵,污泥通过潜水泵不断地从主曝气区抽送至选择器中(污泥回流量约为进水流量的20%左右),所设置的剩余污泥泵在沉淀阶段结束后将工艺过程中产生的剩余污泥排出系统,剩余污泥的浓度一般为10 g/L左右。主反应区污泥回流到选择区与进水混合,可以充分利用活性污泥的快速吸附作用,加速对溶解性底物的去除并对难降解有机物起到良好的水解作用,同时可使污泥中的磷在厌氧条件下得到有效的释放。
(5)运行阶段
CASS是连续进水工艺,运行工序也由曝气、沉淀、滗水组成。一般也采用多个池子为一组(一般为2个)。循环开始时,由于充水,池子中的水位由某一最低水位开始上升,经过一定时间的曝气和混合后停止曝气,以使活性污泥为一个静止的环境中沉淀。在完成沉淀阶段后,由一个移动式滗水堰排出已处理的上清液,使水位下降至池子所设定的最低水位,然后再重复上述过程。为保持池子中有一个合适的污泥浓度,需要根据产生的污泥量排出相应的剩余污泥。排除剩余污泥一般在沉淀阶段结束后进行,排出的污泥浓度可达10 g/L左右。
3)MSBR工艺(改良型SBR工艺)
MSBR是80年代后期发展起来的技术,目前其中的专利技术归美国芝加哥附近的Aqua AEROBIC SYSTEM,Inc所有。MSBR是连续进水、连续出水的反应器,其实质是A2/O系统后接SBR,因此具有A2/O的生物除磷脱氮功能和SBR的一体化、流程简洁、控制灵活等优点,MSBR系统流程图见8-11。
图8-11 MSBR工艺流程图
污水进入厌氧池,回流活性污泥在这里进行充分放磷,然后污水进入缺氧池进行反硝化。反硝化后的污水进入好氧池,有机物在这里被好氧降解、活性污泥充分吸磷后再进入起沉淀作用的SBR池,澄清后的污水被排放,此时另一边的SBR在1.5Q回流量的条件下进行起反硝化、硝化,或起静置作用。回流污泥首先进入浓缩区进行浓缩,上清液直接进入好氧池,而浓缩污泥则进入缺氧池,一方面可以进行反硝化,另一方面为先消耗掉回流浓缩污泥中的溶解氧和硝酸盐,为随后的厌氧放磷提供更为有利的条件。在好氧池与缺氧池之间有1.5Q的回流量,以便进行流分的反硝化。
由其工作原理可以看出,MSBR是具有同时进行生物除磷及生物脱氮的污水处理工艺。采用MSBR工艺时需注意以下几个问题:
(1)设备的利用率较低,这是SBR系列工艺的通病,MSBR工艺虽经多次改进,设备的利用率仍仅有74%。
(2)MSBR工艺中的污泥浓缩池,工艺计算中要求在30分钟内将污泥浓度提高近3倍(例如从2.4g/L浓缩到7g/L),由于浓缩池底部布置欠妥,污泥堆积无法避免,因此池内MLSS浓度无法平衡。
(3)进入好氧池有4Q,其中1.5Q回流至缺氧池,1.5Q通过SBR池回流至污泥浓缩池,1.0Q通过SBR池沉淀排出,因此好氧池内流向较紊乱,如何控制1.0Q从沉淀段排出较难。
(4)MSBR工艺各池传动机械设备多,相互之间回流泵多,对控制系统依赖性大,如果自控系统中某一部分出故障时,将导致全厂运行困难。
1.1.2 生物膜法
生物膜法是与活性污泥法平行发展起来的生物处理工艺,是一大类生物处理法的统称。
在生物膜法中,微生物附着在载体表面生长而形成膜状,污水流经载体表面和生物膜接触过程中,污水中的有机污染物即被微生物吸附、稳定和氧化,污水得到净化。在许多情况下,生物膜法不仅能代替活性污泥法用于城市污水的二级生物处理,而且还具有一些独特的有点,如运行稳定、抗冲击负荷、更为经济节能、无污泥膨胀问题、具有一定的硝化和反硝化功能、可实现封闭运转防止臭味等。
生物膜法使用较多的有高负荷生物滤池、生物转盘、接触氧化池及最近发展起来的曝气生物滤池等,特别是曝气生物滤池最具有代表性。
1)曝气生物滤池
曝气生物滤池是20世纪80年代末90年代初在普通生物滤池的基础上,并借鉴给水滤池工艺而开发的污水处理新工艺,最初用于污水的三级处理,后发展成直接用于二级处理。自80年代在欧洲建成第一座曝气生物滤池污水处理厂后,曝气生物滤池已经在欧美等发达地区广为流行。
曝气生物滤池已从单一的工艺逐步发展成为系列综合工艺,具有去除SS、BOD、COD、硝化、脱氮的作用,其最大特点是集生物处理和截留悬浮物于一体,节省了二次沉淀池,在保证处理效果的前提下使处理工艺简化。此外,曝气生物滤池工艺有机物负荷高,水力负荷大,水力停留时间短,水处理效率高,占地小,布置紧凑易于实现集中空气除臭处理,自动化程度高等优点。
国内污水处理厂采用的曝气生物滤池均为上向流的生物滤池,主要有如下特点:
Ø 生化处理彻底;
Ø 细菌及基层菌之间交换面积大;
Ø 滤床为全淹没式,深度可达4m;
Ø 运行适应性强且稳定,并不受原水污染物浓度变化及低污染物的影响;
Ø 生物滤池内生物活性强,经长时间停止后可以快速的重新启动;
Ø 滤料负荷高,节省了污水处理厂的用地。
2)曝气生物滤池处理工艺
在采用曝气生物滤池处理工艺时,根据其处理对象的不同和要求的排放水质指标的不同,通常有三种工艺流程,即一段曝气生物滤池法、两段曝气生物滤池法和三段曝气生物滤池法。
1、一段曝气生物滤池法
一段曝气生物滤池法主要用于处理可生化性较好的工业废水以及排放标准对氨氮等污染物质没有特殊要求的生活污水,也可以用于中水处理或微污染水源水处理,其主要去除对象为污水中的碳化有机物和截留污水中的悬浮物,即去除BOD、COD、SS;而在中水处理或微污染水处理时主要用来降解氨氮。
纯以去除污水中碳化有机物为主的曝气生物滤池称为DC曝气生物滤池,纯以降解氨氮为主的曝气生物滤池称为N曝气生物滤池。
2、两段曝气生物滤池法
两段曝气生物滤池法根据其组合形式可分为DC+N滤池组合和DN+C/N滤池组合形式。
(1)DC+N曝气生物滤池组合
DC+N滤池组合主要用于对污水中有机物的降解和氨氮的硝化。
第一段DC曝气生物滤池以去除污水中碳化有机物为主,第二段N曝气生物滤池以去除污水中氨氮污染物为主。
该组合工艺对污水中有机物和氨氮去除能力强,但对总氮的去除能力有限。
(2)DN+CN曝气生物滤池组合
在该组合工艺中,第一段为DN反硝化生物滤池。污水中的氨氮经第二段C/N曝气生物滤池硝化处理后转化为硝酸盐,并通过回流泵回流至DN反硝化生物滤池,DN生物滤池中的反硝化菌利用原污水中的有机物作为碳源,将回流水中的硝酸盐转化为氮气而起到脱氮的目的,最终去除污水中的总氮指标。
该组合工艺对污水中的有机物、氨氮以及总氮的去除能力较强。
3、三段曝气生物滤池
三段曝气生物滤池是在DC+N两段曝气生物滤池的基础上增加第三段反硝化滤池,同时可以在第二段滤池的出水中投加铁盐或铝盐进行化学除磷,所以第三段滤池也成为DN或DN-P生物滤池。
三段曝气生物滤池自国外应用较多,而在国内少用,其实,为了达到脱氮的目的,采用DN+CN生物滤池组合形式完全能满足要求,没必要采取国外的三段曝气生物滤池组合工艺。
1.1.3 MBR工艺
1)MBR工艺介绍
膜处理技术,是基于膜分离材料的水处理新技术。膜分离技术的工程应用开始于20世纪60年代的海水淡化。以后,随着各种新型膜的不断问世,膜技术也逐步扩展到城市生活饮用水净化和城市污水处理以及医药、食品、生物工程等领域。在全球水资源紧缺、受污染日益严重的今天,膜技术作为一种新型的再生水回用技术,得到越来越广泛的应用。
20世纪80年代,随着膜技术的发展和完善,膜生物反应器(MBR)开始引入城市污水及垃圾填埋渗滤液的处理。这种集成式组合新工艺把生物反应器的生物降解作用和膜的高效分离技术溶于一体,具有出水水质好且稳定、处理负荷高、装置占地面积小、产泥量小、操作管理简单等特点。
膜技术在90年代后期发展迅速,特别是进入21世纪后,随着膜材料生产的规模化、膜组件及其处理产品的设备化和集成化,膜设备生产技术的普及化和价格大众化,膜技术的发展已经从实验室潜在技术迅速发展成为工程实用技术。已经在许多大型工程应用中应用,并且可以与传统技术相竞争。
膜-生物反应器(Membrane-Bioreactor,简称MBR)是一种将膜分离技术与传统污水生物处理工艺有机结合的新型高效污水处理与回用工艺,这种集成式组合新工艺把生物反应器的生物降解作用和膜的高效分离技术溶于一体,具有出水水质好且稳定、处理负荷高、装置占地面积小、产泥量小、操作管理简单等特点。在全球水资源紧缺、受污染日益严重的今天,膜技术作为一种新型的再生水回用技术,近年来在国际水处理技术领域日益得到广泛关注,在国内再生水处理工程中也得到了较大的推广和应用。
近年来,在欧美发达国家已有若干采用MBR 工艺的污水处理厂投入使用,同时还有一批更大规模的采用MBR 工艺的污水处理厂正处于设计或施工阶段,说明该工艺已全面进入成熟阶段,具有良好的应用前景。而且近年来膜的成本呈大幅下降的趋势,可以预见,未来若干年MBR 工艺中膜的费用将继续显著下降。随着膜技术的发展,膜的制造成本的下降和新型膜组件及MBR 工艺的不断开发,MBR 工艺也会得到越来越多的推广和普及。
2)MBR工艺的分类
膜生物反应器主要是由膜组件和生物反应器两部分组成,根据膜组件与生物反应器的组合方式可将膜生物反应器分为以下三种类型:分置式膜生物反应器、一体式膜生物反应器和复合式膜生物反应器。
(1)分置式膜生物反应器
分置式膜生物反应器是指膜组件与生物反应器分开设置相对独立,膜组件与生物反应器通过泵与管路相连接,分置式膜生物反应器的工艺流程如图8-12所示。
该工艺膜组件和生物反应器各自分开,独立运行,因而相互干扰较小,易于调节控制,而且膜组件置于生物反应器之外,更易于清洗更换,但其动力消耗较大,加压泵提供较高的压力,造成膜表面高速错流,延缓膜污染,这是其动力费用大的原因,每吨出水的能耗为2~10kWh,约是传统活性污泥法能耗的10~20倍,因此能耗较低的一体式膜生物反应器的研究逐渐得到了人们的重视。
图8-12 分置式膜生物反应器工艺流程
(2)一体式膜生物反应器
一体式膜生物反应器起源于日本,主要用于处理生活污水,近年来欧洲一些国家也热衷于它的研究和应用。一体式膜生物反应器是将膜组件直接安置在生物反应器内部,有时又称为淹没式膜生物反应器(SMBR),依靠重力或水泵抽吸产生的负压或真空泵作为出水动力。一体式膜生物反应器工艺流程如图8-13所示。
图8-13 一体式膜生物反应器工艺流程
该工艺由于膜组件置于生物反应器之中,减少了处理系统的占地面积,而且该工艺用抽吸泵或真空泵抽吸出水,动力消耗费用远远低于分置式膜生物反应器,每吨出水的动力消耗约是分置式的1/10。如果采用重力出水,则可完全节省这部分费用。但由于膜组件浸没在生物反应器的混合液中,污染较快,而且清洗起来较为麻烦,需要将膜组件从反应器中取出。
(3)复合式膜生物反应器
复合式膜生物反应器也是将膜组件置于生物反应器之中,通过重力或负压出水,但生物反应器的型式不同,复合式MBR是在生物反应器中安装填料,形成复合式处理系统,其工艺流程如图8-14所示。
图8-14 复合式膜生物反应器工艺流程
在复合式膜生物反应器中安装填料的目的有两个:一是提高处理系统的抗冲击负荷,保证系统的处理效果;二是降低反应器中悬浮性活性污泥浓度,减小膜污染的程度,保证较高的膜通量。
复合式膜生物反应器中,由于填料上附着生长着大量微生物,能够保证系统具有较高的处理效果并有抵抗冲击负荷的能力,同时又不会使反应器内悬浮污泥浓度过高,影响膜通量。
3)MBR工艺的特点
(1)对污染物的去除效率高
MBR对悬浮固体(SS)浓度和浊度有着非常良好的去除效果。由于膜组件的膜孔径非常小(0.01~1µm),可将生物反应器内全部的悬浮物和污泥都截留下来,其固液分离效果要远远好于二沉池,MBR对SS的去除率在99%以上,甚至达到100%;浊度的去除率也在90%以上,出水浊度与自来水相近。
由于膜组件的高效截留作用,将全部的活性污泥都截留在反应器内,使得反应器内的污泥浓度可达到较高水平,最高可达40~50g/L。这样就大大降低了生物反应器内的污泥负荷,提高了MBR对有机物的去除效率,对生活污水COD的平均去除率在94%以上,BOD的平均去除率在96%以上。
同时,由于膜组件的分离作用,使得生物反应器中的水力停留时间(HRT)和污泥停留时间(SRT)是完全分开的,这样就可以使生长缓慢、世代时间较长的微生物(如硝化细菌)也能在反应器中生存下来,保证了MBR除具有高效降解有机物的作用外,还具有良好的硝化作用。研究表明,MBR在处理生活污水时,对氨氮的去除率平均在98%以上,出水氨氮浓度低于1mg/L。
此外,选择合适孔径的膜组件后,MBR对细菌和病毒也有着较好的去除效果,这样就可以省去传统处理工艺中的消毒工艺,大大简化了工艺流程。另外,在DO浓度较低时,在菌胶团内部存在缺氧或厌氧区,为反硝化创造了条件。仅采用好氧MBR工艺,虽然对TP的去除效率不高,但如果将其与厌氧进行组合,则可大大提高TP的去除率。研究表明,采用A/O复合式MBR工艺,对TP的去除率可达70%以上。
(2)具有较大的灵活性和实用性
在城市污水或工业废水处理中,传统的处理工艺(格栅+沉砂池+初沉池+曝气池+二沉池+消毒池)流程较长,占地面积大,而出水水质又不能保证。而MBR工艺(筛网过滤+MBR)则因流程短、占地面积小、处理水量灵活等特点,而呈现出明显优势。MBR的出水量根据实际情况,只需增减膜组件的片数就可完成产水量调整,非常简单、方便。
对于传统的活性污泥法工艺中出现的污泥膨胀现象,MBR由于不用二沉池进行固液分离,可以轻松解决。这样就大大减轻了管理操作的复杂程度,使优质、稳定的出水成为可能。同时,MBR工艺非常易于完全实现自动化,无需专人负责运行维护,提高了污水处理的自动化水平。
(3)解决了剩余污泥处置难的问题
剩余污泥的处置问题是污水处理厂运行好坏的关键问题之一。MBR工艺中,污泥负荷非常低,反应器内营养物质相对缺乏,微生物处在内源呼吸区,污泥产率低,因而使得剩余污泥的产生量很少,SRT得到延长,排除的剩余污泥浓度大,可不用进行污泥浓缩而直接进行脱水,这就大大节省了污泥处理的费用。有研究得出,在处理生活污水时,MBR最佳的排泥时间在35d左右。
(4)膜-生物反应器的缺点
Ø 膜-生物反应器也存在一些不足,主要表现在以下几个方面:
Ø 膜造价高,使膜-生物反应器的基建投资高于传统污水处理工艺;
Ø 膜容易受污染,给操作管理带来不便,污染将导致膜组件寿命缩短,一般3~5年就需要更换;
Ø 受膜过滤通量能力的限制,承受水力冲击负荷能力差;
Ø 能耗高:首先MBR泥水分离过程必须保持一定的膜驱动压力,其次是MBR池中MLSS浓度非常高,要保持足够的传氧速率,必须加大曝气强度,还有为了加大膜通量、减轻膜污染,必须增大膜组件曝气量,冲刷膜表面,造成MBR的能耗要比传统的生物处理工艺高。
因此,MBR工艺缺点和优点都比较突出。
1.2 工艺系列比较
本工程是一座大型污水处理厂,所采用的工艺必须是成熟可靠的,同时也要考虑工艺的先进性。污水处理工艺的选择是依据进水水质、水量、处理后排放标准及当地管理水平等综合因素确定。处理工艺的选择,还应立足于技术先进、经济合理、易于维护的原则,实现技术、经济、实用和效益的统一。
城市污水生物处理以其经济优势和稳定的效果,被广泛采用,其中活性污泥法应用最广,在生产实践中发展最完善,结合我国城市污水处理厂的经验,本工程推荐采用活性污泥法处理工艺。
对以上介绍的几种具有脱氮除磷工艺优缺点进行初步的比较,详见下表:
表8-4 各工艺系列优缺点比较表
项目
改良型氧化沟工艺
改良A2/O工艺
SBR工艺
MBR工艺
处理效果
较好
(前置厌氧段+化学辅助除P)
较好
(前置厌氧段+化学辅助除P)
较好
(前置厌氧段+化学辅助除P)
好
(化学辅助除P)
运行可靠性
好
好
较好
较好
系统抗冲击能力
好
较好
好
受膜过滤通量能力的限制,承受冲击负荷的能力较差
操作管理要求
方便
方便
要求较高
要求高
构筑物数量
一般
一般
较少(可省二沉池)
较少(可省二沉池)
设备数量
一般
一般
较少
较多
设备利用率
高
高
低
高
污泥量
一般
一般
一般
低
污泥稳定性
较稳定
较稳定
较稳定
较稳定
构筑物布置集约化程度
较差
较高
高
高
构筑物占地
大
大
较小
较小
运行费用
一般
一般
较高
高
自动化控制系统
自动化程度要求一般
自动化程度要求一般
自动化程度要求高
自动化程度要求高
规模适应性
大、中型
大、中、小型
中、小型
中、小型
工程投资
中
中
中
膜造价高,基建投资高于传统污水处理工艺
工程实例
多
多
较多
一般
展开阅读全文