1、1 人教版六年级数学上册概念知识点整理人教版六年级数学上册概念知识点整理第一单元第一单元 分数乘法分数乘法一、分数乘法一、分数乘法(一)(一)分数乘法的意义:分数乘法的意义:1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。例如:5 表示求 5 个的和是多少,也表示的 5 倍是多少。9898982、一个数乘分数是求一个数的几分之几是多少。例如:表示求的是多少。98439843(二)(二)分数乘法的计算法则分数乘法的计算法则:1、分数与整数相乘分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分整数和分母约分)2、分数与分数相乘分数与分数相乘:用分子相乘的积做
2、分子,分母相乘的积做分母。3、为了计算简便,能约分的要先约分,再计算为了计算简便,能约分的要先约分,再计算。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。4、分数连乘的计算方法分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。(三)(三)、乘法规律:乘法规律:(乘法中比较大小时)(乘法中比较大小时)一个数(0 除外)乘大于 1 的数,积大于这个数。一个数(0 除外)乘小于 1 的数(0 除外),积小于这个数。一个数(0 除外)乘 1,积等于这个数。(四)(四)、分数混合运算的运算顺序和整数的运算顺序相同。分数
3、混合运算的运算顺序和整数的运算顺序相同。速记歌谣:先乘除后加减,有了括号先算里,同级运算从左起,简便方法不忘速记歌谣:先乘除后加减,有了括号先算里,同级运算从左起,简便方法不忘记。记。2(五)(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。乘法交换律:abab =baba 乘法结合律:(ab)c(ab)c =a(bc)a(bc)乘法分配律:(a a +b b)c c =acac +bcbc二、二、分数乘法的解决问题分数乘法的解决问题(已知单位已知单位“1”“1”的量(用乘法)的量(用乘法),求单位“1”的几分之几是多少
4、)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。2、找单位找单位“1”“1”:一般在分率句中一般在分率句中分率的前面分率的前面;或;或 “占占”、“是是”、“比比”的后的后面面3、求一个数的几倍:一个数一个数几倍几倍;求一个数的几分之几是多少:一个数一个数。几几4、写数量关系式技巧:(1 1)“的的”相当于相当于 “”“”“占占”、“是是”、“比比”相当于相当于“=”(2 2)分率前是)分率前是“的的”:单位单位“1”“1”的量的量分率分率=对应量(比较对应量(比较量)量)(3 3)分率前是)分率前是“多或少多或少”:单位单位“1”“1”的量的量(1 1
5、 分率)分率)=对应量(比较对应量(比较量)量)三、三、倒数倒数1、倒数的意义:乘积是乘积是 1 1 的的两个数两个数互为倒数。互为倒数。强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。3(2)、求整数的倒数:把整数看做分母是 1 的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。(4)、求小数的倒数:把小数化为分数,再求倒数。3、1 1 的倒数是的倒数是 1 1;0 0 没有倒数没有倒数。因为 11=1;0 乘任何数都得 0,(分母不能为010)4、对于
6、任意数,它的倒数为;非零整数的倒数为;分数的倒数是;(0)a a 1aa1abaab5、真分数的倒数大于真分数的倒数大于 1 1;假分数的倒数小于或等于假分数的倒数小于或等于 1 1;带分数的倒数小于带分数的倒数小于 1 1。第二单元第二单元 位置与方向位置与方向1 1、位置与方向三要素:位置与方向三要素:方向、角度、距离。方向、角度、距离。方向:方向:上北下南,左西右东。上北下南,左西右东。2 2、位置的相对性:位置的相对性:方向相反,角度相同,距离相等。方向相反,角度相同,距离相等。例如:小明站在小华例如:小明站在小华东东偏偏南南 30300 0方向方向 200200 米处,那么小华站在小
7、明米处,那么小华站在小明西西偏偏北北 30300 0方向方向 200200 米处。米处。第三单元第三单元 分数除法分数除法一、一、分数除法分数除法1、分数除法的意义:分数除法的意义:乘法:因数 因数=积 除法:积 一个因数=另一个因数 分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。例如:表示已知两个因数的积是,其中一个因数是,求另一个因数是多少。983298322、分数除法计算法则:分数除法计算法则:除以一个不为 0 的数,等于乘这个数的倒数。(甲数除以乙数(0 除外),等于乘乙数的倒数)4例如:983298233、除法规律(分数除法比较大小时):(1)
8、、当除数大于 1,商小于被除数;(2)、当除数小于 1(不等于 0),商大于被除数;(3)、当除数等于 1,商等于被除数。4、“”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。二、分数除法解决问题二、分数除法解决问题(未知单位未知单位“1”“1”的量(用除法)的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。)1、数量关系式和分数乘法解决问题中的关系式相同:(1 1)分率前是分率前是“的的”:单位单位“1”“1”的量的量分率分率=分率对应量分率对应量(2 2)分率前是分率前是“多或少多或少”的意思:的意思:单位单位“1”“1”的量的量
9、(1 1 分率)分率)=分率对应量分率对应量2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为 X,用方程解答。(2 2)算术算术(用除法)(用除法):对应量对应量对应分率对应分率 =单位单位“1”“1”的量的量 3、求一个数是另一个数的几分之几:比较量比较量单位单位“1”“1”的量的量=分率分率4、求一个数比另一个数多(少)几分之几:两个数的两个数的相差量相差量单位单位“1”“1”的量的量=多(少)的分率多(少)的分率 或:或:求多几分之几:大数大数小数小数 1 1 求少几分之几:1 1 -小数小数大数大数三、工程问题三、工程问题5用用“1”“1”表示工作总量,用表示工作
10、总量,用表示工作效率,用工作总量表示工作效率,用工作总量工作效率求出工作效率求出工作时间1工作时间。工作时间。数量关系:工作效率数量关系:工作效率工作时间工作总量工作时间工作总量工作总量工作总量工作时间工作效率工作时间工作效率 工作总量工作总量工作效率工作时间工作效率工作时间第四单元第四单元 比和比的应用比和比的应用(一)、比的意义(一)、比的意义1、比的意义比的意义:两个两个数相除相除又叫做两个数的比比。2、在两个数的比中,比号前面的数叫做比的前项前项,比号后面的数叫做比的后项后项。比的前项除以后项所得的商商,叫做比值比值。比的后项不能为 0,因为比的后项相当于除法中的除数,除数不能为 0.
11、例如 15:10=1510=(比值通常用分数表示,也可以用小数或整数表示比值通常用分数表示,也可以用小数或整数表示)23 前项 比号 后项 比值3、比可以表示两个相同量相同量的关系,即倍数关系倍数关系。也可以表示两个不同量不同量的比,得到一个新新量量。例:路程速度=时间。4、求比值的方法求比值的方法:用比的前项除以比的后项。5、区分比和比值区分比和比值比比:表示两个数两个数的倍数关系,有前项和后项比值比值:相当于商,是一个数一个数,可以是整数、分数、或小数,不带单位名称。6、根据分数与除法的关系,两个数的比也可以写成分数形式两个数的比也可以写成分数形式。例如 3:2 也可以写成,仍32读作“3
12、:2”。7、比和除法、分数的联系:比前 项比号“:”后 项比值除 法被除数除号“”除 数商6分 数分 子分数线“”分 母分数值8 8、比和除法、分数的区别:、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的倍数关系。9、根据比与除法、分数的关系,可以理解比的后项不能为 0。体育比赛中出现两队的分是体育比赛中出现两队的分是 2 2:0 0 等,这只是一种记分的形式,不表示两个数相除的关系。等,这只是一种记分的形式,不表示两个数相除的关系。(二)(二)、比的基本性质、比的基本性质1、根据比、除法、分数的关系根据比、除法、分数的关系:商不变的性质商不变的性质:被除数和除数同时乘或除
13、以相同的数(0 除外),商不变。分数的基本性质分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0 除外),分数值不变。比的基本性质比的基本性质:比的前项和后项同时乘或除以相同的数(0 除外),比值不变。2 2、最简整数比、最简整数比:比的前项和后项都是整数,并且是互质数(只有公因数 1),这样的比就是最简整数比。3、根据比的基本性质根据比的基本性质,可以把比化成最简单的整数比(最简比)。4.化简比:整数比:用比的前项和后项同时除以它们的最大公因数。(1)分数比:用前项后项同时乘分母的最小公倍数,化成整数比,再化成最简比。小数比:前项后项同时扩大相同的倍数,化成整数比,再化成最简比。(2
14、)用求比值的方法。如:1510=1510=32235 5、求比值与化简比的区别、求比值与化简比的区别求比值:用前项除以后项,结果是一个数;化简比:依据比的基本性质,前项后项同时乘或求比值:用前项除以后项,结果是一个数;化简比:依据比的基本性质,前项后项同时乘或除以一个相同的数(除以一个相同的数(0 0 除外),结果是一个最简比。除外),结果是一个最简比。6 6、路程相同,速度比和时间比成反比、路程相同,速度比和时间比成反比。(如:路程相同,速度比是如:路程相同,速度比是 4 4:5 5,时间比则为,时间比则为5 5:4 4)依据比的基本性质:7 工作总量相同,工作效率和工作时间成反比工作总量相
15、同,工作效率和工作时间成反比。(如:工作总量相同,工作时间比是(如:工作总量相同,工作时间比是 3 3:2 2,工作效率比则是,工作效率比则是 2 2:3 3)(三)比的应用题(三)比的应用题1 1、求每份数的方法、求每份数的方法和总份数=每份数 相差数相差份数=每份数 部分数对应份数=每份数2、图形求比的常见公式、图形求比的常见公式长方体长方体:(长+宽+高)的和=棱长和4 长方形长方形:(长+宽)的和=周长23、相遇问题、相遇问题 速度和速度和=路程相遇时间4 4、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按
16、比例分配。做按比例分配。按比例分配应用题的结构特征:已知按比例分配应用题的结构特征:已知总数总数和和各部分数的比各部分数的比,求,求各部分数各部分数。方法与步骤:方法与步骤:1 1、根据比先求出总份数。、根据比先求出总份数。2 2、求出各部分数占总数的几分之几。、求出各部分数占总数的几分之几。3 3、运用分数乘法列式计算,求出各部分数。、运用分数乘法列式计算,求出各部分数。4 4、答题并检验。、答题并检验。第五单元第五单元 圆圆一、一、认识圆认识圆1、圆的定义圆的定义:圆是由曲线围成的一种封闭图形。2、圆心圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母 O 表
17、示。3、半径半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母 r 表示。把圆规两脚分开,两脚之间的距离就是圆的半径。4、直径直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母 d 表示。直径是一个圆内最长的线段。5、在同圆或等圆内在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。86、在同圆或等圆内在同圆或等圆内,直径的长度是半径的 2 倍,半径的长度是直径的。21用字母表示为:d2r 或 r d217圆心确定圆的位置,半径确定圆的大小。8、轴对称图形轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条
18、直线叫做对称轴。9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。10、只有只有 1 1 一条对称轴的图形一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。只有只有 2 2 条对称轴的图形条对称轴的图形是:长方形只有只有 3 3 条对称轴的图形条对称轴的图形是:等边三角形只有只有 4 4 条对称轴的图形条对称轴的图形是:正方形;有无数条对称轴的图形有无数条对称轴的图形是:圆、圆环。二、二、圆的周长圆的周长1、圆的周长圆的周长:围成圆的曲线的长度叫做圆的周长。用字母 C 表示。2、圆周率实验:圆周率实验:(1)绳测法:用绳子绕圆一圈,拉直后用直尺量出长度即求出圆的周
19、长。(2)滚动法:在圆形纸片上做个记号,与直尺 0 刻度对齐,在直尺上滚动一周,求出圆的周长。发现一般规律,就是圆周长与它直径的比值是一个固定数()。圆的周长总是它直径的 3倍多一些。3圆周率圆周率:任意一个圆的周长周长与它的直径直径的比值比值是一个固定的数,我们把它叫做圆周率圆周率。用字母(pai)表示。圆周率圆周率 是一个无限不循环小数。是一个无限不循环小数。在计算时,一般取 3.14。(1)在判断时,圆周长与它直径的比值是在判断时,圆周长与它直径的比值是 倍,而不是倍,而不是 3.143.14 倍或倍或 3 3 倍多一些倍多一些。(2)世界上第一个把圆周率算出来的人是我国的数学家世界上第
20、一个把圆周率算出来的人是我国的数学家祖冲之祖冲之。4、圆的周长公式圆的周长公式:C=d d=C 或 C=2 r r=C 25、在一个正方形里画一个最大的圆在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。在一个长方形里画一个最大的圆在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。96、区分区分周长的一半周长的一半和和半圆的周长半圆的周长:(1 1)周长的一半周长的一半:等于圆的周长2 计算方法:计算方法:2 r 2 即 C=21r r (2 2)半圆的周长:半圆的周长:等于圆的周长的一半圆的周长的一半加直径直径。计算方法计算方法:C 半圆=dd 2d d C 半圆=rr2r2r 三
21、、三、圆的面积圆的面积1、圆的面积:圆的面积:圆所占平面的大小叫做圆的面积。用字母 S 表示。2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。角。3、圆面积公式圆面积公式的推导的推导:(1)、用逐渐逼近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。(3)、拼出的图形与圆的周长和半径的关系。圆的半径 =长方形的宽 圆的周长的一半 =长方形的长 因为:长方形面积 =长 宽所以
22、:圆的面积=圆周长的一半 圆的半径 S S 圆圆 =rr r r =rr2 2 圆的面积公式圆的面积公式:S S圆圆 =rr2 2 r r2 2 =S S 圆的面积公式圆的面积公式:S S =r=r2 2 2 或 S S =rr2 21 12 21 12 2圆的面积公式圆的面积公式:S S =r=r2 2 4 或 S S =rr2 21 14 41 14 4104 4、环形的面积:(、环形的面积:(环形的面积等于等于外圆面积与内圆面积的差)差)一个环形,外圆的半径是 R,内圆的半径是 r。(Rr环的宽度)S S环环 =RR 或或环形的面积公式环形的面积公式:S S环环 =(RR)。求环形的面积
23、求环形的面积,一定要先想法分别求出外圆的半径(,一定要先想法分别求出外圆的半径(R R)和内圆的半径()和内圆的半径(r r)再代入公式计算。一步一步的来,这样不容易错误。注意用公式再代入公式计算。一步一步的来,这样不容易错误。注意用公式 S S环环 =(RR)计算时,要先算出计算时,要先算出 2 2 个平方数,再相减。切忌相减后再平方。个平方数,再相减。切忌相减后再平方。5、扇形的面积计算公式扇形的面积计算公式:S S扇扇 =rr2 2(n n 表示扇形圆心角的度数表示扇形圆心角的度数)360n6、一个圆一个圆,半径扩大或缩小多少倍,直径和周长直径和周长也扩大或缩小相同的倍数相同的倍数。而面
24、积面积扩大或缩小的倍数是这倍数的平方倍倍数的平方倍。例如:例如:在同一个圆里,半径扩大在同一个圆里,半径扩大 3 3 倍,那么直径和周长就都扩大倍,那么直径和周长就都扩大 3 3 倍,而面积扩大倍,而面积扩大 9 9 倍。倍。7、两个圆:两个圆:半径比半径比 =直径比直径比 =周长比;而面积比等于这比的平方。周长比;而面积比等于这比的平方。例如:两个圆的半径比是 23,那么这两个圆的直径比和周长比都是 23,而面积比是面积比是 4 4998、任意一个正方形与它内切圆的面积之比都是一个固定值,即:任意一个正方形与它内切圆的面积之比都是一个固定值,即:4 4 圆的周长是直径的圆的周长是直径的 倍,
25、圆的周长与直径的比是倍,圆的周长与直径的比是:1 1 圆的周长是半径的圆的周长是半径的 22 倍,圆的周长与半径的比是倍,圆的周长与半径的比是 22:1 19、当长方形,正方形,圆的周长相等时,周长相等时,圆面积最大圆面积最大,正方形居中,长方形面积最小。反之,面积相同时面积相同时,长方形的周长最长,正方形居中,圆周长最短圆周长最短。1010、周长计算公式:周长计算公式:知道半径求周长:C=2r 知道直径求周长:C=d 已知周长:D=C 圆周长的一半:周长(曲线)1 12 2半圆的周长:周长+直径 C=rr2r2r1 12 2面积计算公式:(无论是知道直径或者周长,都应该先求出半径,再求面面积
26、计算公式:(无论是知道直径或者周长,都应该先求出半径,再求面积)积)知道半径求面积:S=rr2 2 知道直径求面积:S=(d d2)2 2 11知道周长求面积:S=(C2)2 211、确定起跑线:确定起跑线:(1)每条跑道的长度=两个半圆形跑道合成的圆的周长+两个直道的长度。(2)每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。(因此起跑线不同)(3)每相邻两个跑道相隔的距离是:22跑道的宽度跑道的宽度(4)当一个圆的半径增加厘米时,它的周长就增加厘米;当一个圆的直径增加厘米时,它的周长就增加 厘米。1212、常用各、常用各 值结果:值结果:=3.143.1422 =6.286.28
27、 33 =9.429.42 55 =15.715.7 66 =18.8418.84 77 =21.9821.98 99 =28.2628.261010 =31.431.4 1616 =50.2450.24 36 =113.0464 =200.96200.9696 =301.44301.4444 =12.5612.56 88 =25.1225.12 2525 =78.578.51313、常用平方数结果、常用平方数结果 =121121 =144144 =169169 =196196 =225225 112122132142152 =256256 =289289 =324324 =361361 16
28、2172182192第六单元第六单元 百分数百分数一、一、百分数的意义和写法百分数的意义和写法1、百分数的意义百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。百分数通常不写成分数形式,而采用百分号“%”,百分数后面不能带单位名称。2、千分数千分数:表示一个数是另一个数的千分之几。3、百分数和分数的主要联系与区别:(1)联系:都可以表示两个量的倍比关系。(2)区别:12、意义不同:百分数百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单不能带单位位;分数分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位可以带单位。、百
29、分数的分子百分数的分子可以是整数,也可以是小数;分数的分子分数的分子不能是小数,只能是除 0 以外的自然数。、百分数的读法和分数的读法大体相同百分数的读法和分数的读法大体相同,也是先读分母,后读分子,但要注意读百分数的分母时,不能读成一百分之几,而只能读作只能读作“百分之几百分之几”4、百分数的写法:百分数的写法:通常不写成分数形式,而在原来分子后面加上“”来表示。二、二、百分数和分数、小数的互化百分数和分数、小数的互化(一)百分数与小数的互化:(一)百分数与小数的互化:1 1、小数化成百分数:、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。2.2.百分数化成小数:百分数化成小数
30、:把小数点向左移动两位,同时去掉百分号。(二)百分数的和分数的互化(二)百分数的和分数的互化1 1、百分数化成分数:、百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否 100 的分数,能约分要约成最简分数。能约分要约成最简分数。2 2、分数化成百分数:、分数化成百分数:用分数的基本性质,把分数分母扩大或缩小成分母是 100 的分数,再写成百分数形式。先把分数化成小数(除不尽时,通常保留三位小数除不尽时,通常保留三位小数),再把小数化成百分数。(三)常见的分数与小数、百分数之间的互化(三)常见的分数与小数、百分数之间的互化=0.5=50%=0.2=20%=0.625=62.5%215
31、185=0.25=25%=0.4=40%=0.125=12.5%415281=0.75=75%=0.6=60%=0.375=37.5%435383=0.0625=6.25%=0.8=80%=0.875=87.5%1615487=0.04=4 =0.08=8 =0.12=12 =0.16=16 25125225325413三、用百分数解决问题三、用百分数解决问题(一)一般应用题(一)一般应用题1、常见的百分率的计算方法:合格率=发芽率=%100产品总数合格产品数%100种子总数发芽种子数出勤率=达标率=%100总人数出勤人数%100学生总人数达标学生人数成活率=出粉率=%100总数量成活的数量%
32、100出粉物的重量粉的重量烘干率=含水率=%100烘干前的重量烘干后的重量%100烘干前的重量烘干后的重量烘干前的重量一般来讲,出勤率、成活率、合格率、正确率能达到 100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过 100%。(一般出粉率在 70、80%,出油率在30、40%。)2、已知单位已知单位“1”“1”的量(用乘法)的量(用乘法),求单位“1”的百分之几是多少的问题:数量关系式和分数乘法解决问题中的关系式相同:数量关系式和分数乘法解决问题中的关系式相同:(1 1)分率前是)分率前是“的的”:单位单位“1”“1”的量的量分率分率=分率对应量分率对应量(2 2)分率
33、前是)分率前是“多或少多或少”的意思:的意思:单位单位“1”“1”的量的量(1 1 分率)分率)=分率对应量分率对应量3、未知单位未知单位“1”的量(用除法)的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为 X,用方程解答。(2 2)算术算术(用除法)(用除法):分率对应量分率对应量对应分率对应分率 =单位单位“1”“1”的量的量 4、求一个数比另一个数多(少)百分之几的问题:两个数的相差量相差量单位单位“1”“1”的量的量 100%100%或:求多百分之几:(大数(大数小数小数 1 1)100%100%求少百分之
34、几:(1 1 -小数小数大数)大数)100%100%14(二)、折扣(二)、折扣1、折扣折扣:商品按原定价格的百分之几出售,叫做折扣。通称通称“打折打折”。几折就表示十分之几,也就是百分之几十。例如八折=80,六折五=0.65=651082、一成一成是十分之一,也就是 10%。三成五就是十分之三点五,也就是 35%几成”就是十分之几,也就是百分之几十。如:五成表示()%“折扣”表示某种商品降价的幅度。如:75 折就表示现价是原价()%(三)(三)、纳税、纳税1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。2、纳税的意义:税收是国家财政收入的主要来源之一
35、。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。3、应纳税额:缴纳的税款叫做应纳税额。4、税率:应纳税额与各种收入的比率叫做税率。5、应纳税额的计算方法:应纳税额=总收入 税率(四)利息(四)利息1、存款分为活期、整存整取和零存整取等方法。2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。3、本金:存入银行的钱叫做本金。4、利息:取款时银行多支付的钱叫做利息。5、利率:利息利息与本金本金的比值比值叫做利率。6、利息的计算公式:利息本金利息本金利率利率时间时间7、注意:如要上利息税(国债和
36、教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息利息税率=利息(1-利息税率)8、本息=本金+利息第七单元第七单元 统计统计一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。15也就是各部分数量占总数的百分比(因此也叫百分比图)。二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。
37、(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)补充内容补充内容一、数对一、数对1、用数对数对确定点的位置,如(3,5)表示:(第三列,第五行)几几 列列 几几 行行 竖排叫列 横排叫行一般(从左往右看)(从前往后看)2、平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。3、图形左、右平移:行不变 图形上、下平移:列不变二、二、“鸡兔同笼鸡兔同笼”问题问题“鸡兔同笼鸡兔同笼”问题的特点:问题的特点:题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。“鸡兔同笼鸡兔同笼”问题的解题方法问题的解题方法1、猜测法2 2、假设法、假设法(1)假如都是兔(2)假如都是鸡(3)古人“抬脚法”:16解答思路:假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔的脚的总数就少了一半。这种思维方法叫化归法。关系式:鸡兔总脚数2-鸡兔总数=兔的只数;鸡兔总数-兔的只数=鸡的只数。3、列方程法