收藏 分销(赏)

2018年高考试题——文科数学(全国卷Ⅰ)Word版含答案.doc

上传人:知****运 文档编号:10816079 上传时间:2025-06-18 格式:DOC 页数:11 大小:1.72MB 下载积分:8 金币
下载 相关 举报
2018年高考试题——文科数学(全国卷Ⅰ)Word版含答案.doc_第1页
第1页 / 共11页
2018年高考试题——文科数学(全国卷Ⅰ)Word版含答案.doc_第2页
第2页 / 共11页


点击查看更多>>
资源描述
2018年普通高等学校招生全国统一考试 文科数学 注意事项: 1.答卷前,考生务必将自己的九名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回. 一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合,,则( ) A. B. C. D. 2.设,则( ) A.0 B. C. D. 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图: 则下面结论中不正确的是( ) A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记为等差数列的前项和.若,,则( ) A. B. C. D.12 5.设函数.若为奇函数,则曲线在点处的切线方程为( ) A. B. C. D. 6.在中,为边上的中线,为的中点,则( ) A. B. C. D. 7.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱 侧面上,从到的路径中,最短路径的长度为( ) A. B. C. D.2 8.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则( ) A.5 B.6 C.7 D.8 9.已知函数,( ),若存在2个零点,则的取值范围是 A. B. C. D. 10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则( ) A. B. C. D. 11.已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为,.若为直角三角形,则( ) A. B.3 C. D.4 12.设函数,则满足的的取值范围是( ) A. B. C. D. 二、填空题(本题共4小题,每小题5分,共20分) 13.已知函数,若,则________. 14.若满足约束条件,则的最大值为________. 15.直线与圆交于两点,则 ________. 16.的内角的对边分别为,已知,,则的面积为________. 三、解答题(共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。) (一)必考题:共60分。 17.(12分) 已知数列满足,,设. ⑴求; ⑵判断数列是否为等比数列,并说明理由; ⑶求的通项公式. 18.(12分) 在平面四边形中,,,以为折痕将折起,使点到达点的位置,且. ⑴证明:平面平面; ⑵为线段上一点,为线段上一点,且,求三棱锥的体积. 19.(12分) 某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下: 未使用节水龙头50天的日用水量频数分布表 日用 水量 频数 1 3 2 4 9 26 5 使用了节水龙头50天的日用水量频数分布表 日用 水量 频数 1 3 13 10 16 5 ⑴在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图: ⑵估计该家庭使用节水龙头后,日用水量小于0.35m3的概率; ⑶估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.) 20.(12分) 设摆好物线,点,,过点的直线与交于,两点. ⑴当与轴垂直时,求直线的方程; ⑵证明:. 21.(12分) 已知函数. ⑴油麦菜是的极值点.求,并求的单调区间; ⑵证明:当,. (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。 22.[选修4—4:坐标系与参数方程](10) 在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为. ⑴求的直角坐标方程; ⑵若与有且仅有三个公共点,求的方程. 23.[选修4—5:不等式选讲](10分) 已知. ⑴当时,求不等式的解集; ⑵若时不等式成立,求的取值范围. 文科数学试题参考答案 一、选择题 1.A 2.C 3.A 4.C 5.B 6.D 7.A 8.B 9.B 10.C 11.B 12.D 二、填空题 13.-7 14.6 15. 16. 三、解答题 17.解:(1)由条件可得an+1=. 将n=1代入得,a2=4a1,而a1=1,所以,a2=4. 将n=2代入得,a3=3a2,所以,a3=12. 从而b1=1,b2=2,b3=4. (2){bn}是首项为1,公比为2的等比数列. 由条件可得,即bn+1=2bn,又b1=1,所以{bn}是首项为1,公比为2的等比数列. (3)由(2)可得,所以an=n·2n-1. 18.解:(1)由已知可得,=90°,. 又BA⊥AD,所以AB⊥平面ACD. 又AB平面ABC, 所以平面ACD⊥平面ABC. (2)由已知可得,DC=CM=AB=3,DA=. 又,所以. 作QE⊥AC,垂足为E,则. 由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1. 因此,三棱锥的体积为 . 19.解:(1) (2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为 0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48, 因此该家庭使用节水龙头后日用水量小于0.35m3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为 . 该家庭使用了节水龙头后50天日用水量的平均数为 . 估计使用节水龙头后,一年可节省水. 20.解:(1)当l与x轴垂直时,l的方程为x=2,可得M的坐标为(2,2)或(2,–2). 所以直线BM的方程为y=或. (2)当l与x轴垂直时,AB为MN的垂直平分线,所以∠ABM=∠ABN. 当l与x轴不垂直时,设l的方程为,M(x1,y1),N(x2,y2),则x1>0,x2>0. 由得ky2–2y–4k=0,可知y1+y2=,y1y2=–4. 直线BM,BN的斜率之和为 .① 将,及y1+y2,y1y2的表达式代入①式分子,可得 . 所以kBM+kBN=0,可知BM,BN的倾斜角互补,所以∠ABM+∠ABN. 综上,∠ABM=∠ABN. 21.解:(1)f(x)的定义域为,f ′(x)=aex–. 由题设知,f ′(2)=0,所以a=. 从而f(x)=,f ′(x)=. 当0<x<2时,f ′(x)<0;当x>2时,f ′(x)>0. 所以f(x)在(0,2)单调递减,在(2,+∞)单调递增. (2)当a≥时,f(x)≥. 设g(x)=,则 当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.所以x=1是g(x)的最小值点. 故当x>0时,g(x)≥g(1)=0. 因此,当时,. 22.[选修4-4:坐标系与参数方程](10分) 解:(1)由,得的直角坐标方程为 . (2)由(1)知是圆心为,半径为的圆. 由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点. 当与只有一个公共点时,到所在直线的距离为,所以,故或. 经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点. 当与只有一个公共点时,到所在直线的距离为,所以,故或. 经检验,当时,与没有公共点;当时,与没有公共点.学.科网 综上,所求的方程为. 23.[选修4-5:不等式选讲](10分) 解:(1)当时,,即 故不等式的解集为. (2)当时成立等价于当时成立. 若,则当时; 若,的解集为,所以,故. 综上,的取值范围为. - 11 -
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服