资源描述
学习奥数的重要性
1. 学习奥数是一种很好的思维训练。奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。
2. 学习奥数能提高逻辑思维能力。奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助
3. 为中学学好数理化打下基础。等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。
4. 学习奥数对孩子的意志品质是一种锻炼。大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。
六年级几何专题复习
如图,已知AB =40cm,图中的曲线是由半径不同的三种半圆弧平滑连接
而成,那么阴影部分的面积是_____cm2。(π取3.14)(几何)
有7根直径都是5分米的圆柱形木头,现用绳子分别在两处把它们捆在一起,则至少需要绳子_____分米。(结头处绳长不计,π取3.14)
图中的阴影部分的面积是________平方厘米。(π取3)
如图,△ABC中,点E在AB上,点F在AC上,BF与CE相交于点P,如果S四边形AEPF=S△BEP=S△CFP=4,则S△BPC=______。
如图,在一个棱长为20厘米的正方体密闭容器的下底固定了一个实体圆柱
体,容器内盛有m升水时,水面恰好经过圆柱体的上底面。如果将容器倒
置,圆柱体有8厘米露出水面。已知圆柱体的底面积是正方体底面积的
1/8,求实心圆柱体的体积。
在三角形ABC中,已知三角形ADE、三角形DCE、三角形BCD的面积分别是9,6,5,那么三角形DBE的面积是 .
答案:
,
所以
如图,三角形田地中有两条小路AE和CF,交叉处为D,张大伯常走这两条小路,他知道DFDC,且AD2DE.则两块田地ACF和CFB的面积比是______.
【分析】 连接,设(份),则,设,则有,解得,所以
如图,分别是四边形各边的中点,与交于点,及分别表示四个小四边形的面积.试比较与的大小.
【分析】 连接、、、,则可判断出,每条边与所构成的三角形被平分为两部分,分属于不同的组合,且对边中点连线,将四边形分成面积相等的两个小四边形,所以.
如图,对于任意四边形,通过各边三等分点的相应连线,得到中间四边形,求四边形的面积是四边形的几分之几?
[分析] 如图,分层次来考虑:
(1),,
所以
又因为,,
所以;
.
(2)已知,;
所以;
所以,即是三等分点;
同理,可知、、都是三等分点;
所以再次应用(1)的结论,可知,
.
如图,正方形ABCD和正方形ECGF并排放置,BF与EC相交于点H,已知AB6厘米,则阴影部分的面积是________平方厘米.
【分析】 连接、,可知四边形是梯形,所以根据梯形蝴蝶定理有,又因为, 所以
右图是由大、小两个正方形组成的,小正方形的边长是厘米,求三角形的面积.
[分析] 连接,可以看出,三角形与三角形的底都等于小正方形的边长,高都等于大正方形的边长,所以面积相等.因为三角形是三角形与三角形的公共部分,所以去掉这个公共部分,根据差不变性质,剩下的两个部分,即三角形与三角形面积仍然相等.根据等量代换,求三角形的面积等于求三角形的面积,等于(平方厘米).
展开阅读全文