资源描述
历年高考物理力学牛顿运动定律考点突破
1
单选题
1、如图甲所示,倾角为θ的粗糙斜面体固定在水平面上,质量为m = 1kg的小木块以初速度为v0 = 10m/s沿斜面上滑,若从此时开始计时,整个过程中小木块速度的平方随路程变化的关系图象如图乙所示,则下列判断正确的是( )
A.在t = 5s时刻,摩擦力方向发生变化
B.0 ~ 13s内小木块做匀变速直线运动
C.斜面倾角θ = 30°
D.小木块与斜面间的动摩擦因数为0.5
答案:D
解析:
A.x在0—5m内,由匀变速直线运动的速度位移公式
v2﹣v02 = 2ax
结合图象看出在0—5m
a = 0-v22x = 0-1002×5m/s2 = ﹣10m/s2
由图示图象可知v02 = 100(m/s)2得,v0 = 10m/s,则小木块匀减速运动的时间
t = 0-v0a = 0-10-10s = 1s
1s后物体反向做匀加速运动,t = 1s时摩擦力反向,A错误;
B.由图示图象可知,物体反向加速运动时的加速度
a'=v22x=322×8m/s2=2m/s2
结合A选项可知,在0—1s内物体向上做匀减速运动,1s后物体反向做匀加速运动,整个过程加速度a发生变化,所以整个过程不是匀变速直线运动,B错误;
CD.由牛顿第二定律得,小木块上滑有
mgsinθ + μmgcosθ = ma
下滑有
mgsinθ﹣μmgcosθ = ma′
代入数据解得
μ = 0.5,θ = 37°
C错误、D正确。
故选D。
2、如图所示,一根弹簧一端固定在左侧竖直墙上,另一端连着A小球,同时水平细线一端连着A球,另一端固定在右侧竖直墙上,弹簧与竖直方向的夹角是60°,A、B两小球分别连在另一根竖直弹簧两端。开始时A、B两球都静止不动,A、B两小球的质量相等,重力加速度为g,若不计弹簧质量,在水平细线被剪断瞬间,A、B两球的加速度分别为( )
A.aA=aB=gB.aA=2g,aB=0
C.aA=3g,aB=0D.aA=23g,aB=0
答案:D
解析:
水平细线被剪断前对A、B两小球进行受力分析,如图所示,静止时,由平衡条件得
FT=Fsin60°
Fcos60°=mAg+F1
F1=mBg
又
mA=mB
解得
FT=23mAg
水平细线被剪断瞬间,FT消失,弹力不能突变,A所受合力与FT等大反向,F1=mBg,所以可得
aA=FTmA=23g
aB=0
ABC错误,D正确。
故选D。
3、如图所示,我校女篮球队员正在进行原地纵跳摸高训练,以提高自已的弹跳力。运动员先由静止下蹲一段位移,经过充分调整后,发力跳起摸到了一定的高度。某运动员原地静止站立(不起跳)摸高为1.90m,纵跳摸高中,该运动员先下蹲,重心下降0.4m,经过充分调整后,发力跳起摸到了2.45m的高度。若运动员起跳过程视为匀加速运动,忽略空气阻力影响,已知该运动员的质量m=60kg,g取10m/s2。则下列说法中正确的是( )
A.运动员起跳后到上升到最高点一直处于超重状态
B.起跳过程中运动员对地面的压力为1425N
C.运动员起跳时地面弹力做功不为零
D.运动员起跳时地面弹力的冲量为零
答案:B
解析:
A.运动员起跳后到上升到最高点,先加速后减速,所以是先超重后失重,故A错误;
B.运动员离开地面后做竖直上抛运动,根据
v=2gh1=2×10×(2.45-1.90)m/s=11m/s
在起跳过程中,根据速度位移公式可知
v2=2ah
解得
a=v22h=112×0.4m/s2=13.75m/s2
对运动员,根据牛顿第二定律可知
F-mg=ma
解得
F=1425N
故B正确;
CD.运动员起跳时地面弹力没有位移,所以做功为零,有作用时间,冲量不为零,故CD错误。
故选B。
4、如图,一倾角为θ = 37°的足够长的斜面固定在水平地面上。当t = 0时,滑块以初速度v0= 10m/s沿斜面向上运动,已知滑块与斜面间的动摩擦因数为μ = 0.5,重力加速度g取10m/s2,sin37° = 0.6,cos37° = 0.8,下列说法正确的是( )
A.滑块上滑的距离小于5m
B.t = 1s时,滑块速度减为零,然后静止在斜面上
C.t = 2s时,滑块恰好又回到出发点
D.t = 3s时,滑块的速度大小为4m/s
答案:D
解析:
A.以沿斜面向下为正方向,上滑过程,由牛顿第二定律得
mgsinθ + μmgcosθ = ma1
代入数据解得
a1=10m/s2
滑块向上的最大位移
x = v022a1=1002×10 = 5m
A错误;
B.由于
mgsinθ > μmgcosθ
可知,滑块不可能静止在斜面上,B错误;
C.下滑过程,由牛顿第二定律得
mgsinθ﹣μmgcosθ = ma2
代入数据解得
a2=2m/s2
滑块向上运动到最高点的时间
t1=0-(-v0)a1=1010=1s
向下的运动
x=12a2t22
所以
t2=5s
滑块恰好又回到出发点的总时间
t=t1+t2=(1+5)s
C错误;
D.选取向下为正方向,t = 3s时,滑块的速度为
v3 = ﹣v0 + a1t1 + a2t2′ = ﹣10 + 10 × 1 + 2 × 2 m/s = 4m/s
D正确。
故选D。
多选题
5、如图甲,足够长的长木板放置在水平地面上,一滑块置于长木板左端。已知滑块和木板的质量均为2kg,现在滑块上施加一个F=0.5t(N)的水平变力作用,从t=0时刻开始计时,滑块所受摩擦力f随时间t变化的关系如图乙所示。设最大静摩擦力与滑动摩擦力相等,重力加速度g取10m/s2,下列说法正确的是( )
A.图乙中t2=24sB.木板的最大加速度为1m/s2
C.滑块与木板间的动摩擦因数为0.4D.木板与地面间的动摩擦因数为0.1
答案:ACD
解析:
C.根据图乙可知,滑块在t2以后受到的摩擦力不变,为8N,根据
f1=μ1mg
可得滑块与木板间的动摩擦因数为
μ1=0.4
C正确;
D.在t1时刻木板相对地面开始运动,此时滑块与木板相对静止,则木板与地面间的动摩擦因数为
μ2=f22mg=440=0.1
D正确;
AB.在t2时刻,滑块与木板将要发生相对滑动,此时滑块与木板间的静摩擦力达到最大,且此时二者加速度相同,且木板的加速度达到最大,对滑块有
F-μ1mg=ma
对木板有
μ1mg-2μ2mg=ma
联立解得
a=2m/s2
F=12N
则木板的最大加速度为2m/s2,根据
F=0.5t
可求得
t2=24s
A正确,B错误。
故选ACD。
6、北京冬奥会于2022年2月4日开幕,中国运动员谷爱凌在自由式滑雪女子大跳台项目中获得金牌。如图所示为“跳台滑雪”赛道的组成部分,为简便处理可抽象为:助滑道倾角为53o,着陆坡倾角为37o,助滑道长57829m,水平起跳区长13.2m,起跳区其一端与助滑道平滑连接(无机械能损失),另一端与着陆坡斜面相接。可视为质点的运动员总质量m=80kg在助滑道顶端从静止出发经6829s滑到起跳区,从起跳区滑出并在着陆坡着陆。已知各处摩擦因数相同,忽略空气阻力,重力加速度g=10m/s2。则( )
A.滑道的摩擦因数为0.125
B.落地点到起跳点的距离为48m
C.从静止出发到着陆前因摩擦而损失的机械能为1320J
D.若考虑起跳区与助滑道连接处的能量损失,着陆速度方向与着陆坡的夹角将增大
答案:AB
解析:
A.运动员在助滑区做匀加速运动,由
x1=12at2
解得
a=7.25m/s2
由牛顿第二定律
a=mgsin53°-μmgcos53°m
解得
μ=0.125
故A正确;
B.从助滑区滑下的速度为
v=at=7.25×6829=17ms
在起跳区,由动能定理
-μmgx2=12mv12-12mv2
解得起跳时速度
v1=16ms
水平起跳后做平抛运动,由
x=v1t1, y=12gt12, tan37°=yx
落地点到起跳点的距离为
s=x2+y2=48m
故B正确;
C.从静止出发到着陆前因摩擦而损失的机械能为
ΔE=μmgx1cos53°+μmgx2=1594J+1320J=2914J
故C错误;
D.若考虑起跳区与助滑道连接处的能量损失,则起跳时速度v2变小。设着陆速度方向与竖直方向的夹角为θ,则
tanθ=v2gt2
又
tan37°=v2t212gt22=2v2gt2
所以着陆速度方向与竖直方向的夹角不变,则着陆速度方向与着陆坡的夹角不变。故D错误。
故选AB。
7、如图所示,A、B、C为三个完全相同的物体,当水平力F作用于A上,三物体一起向右匀速运动;某时撤去力F后,三物体仍一起向右运动,设此时A、B间摩擦力为f,B、C间作用力为FN。整个过程三物体无相对滑动,下列判断正确的是( )
A.f=0B.f≠0
C.FN=0D.FN≠0
答案:BC
解析:
CD.开始三个物体在拉力F的作用下一起向右做匀速运动,可知地面对B、C总的摩擦力
f'=F
B受地面的摩擦力为23F,C受地面的摩擦力为13F;
撤去F后,B、C受地面的摩擦力不变,由牛顿第二定律可知
aB=23F2m=F3m
aC=13Fm=F3m
B、C以相同的加速度向右做匀减速运动,B、C间作用力
FN=0
D错误,C正确;
AB.撤去F后,整个过程三物体无相对滑动,则A与B加速度相同,B对A有向左的摩擦力
f=maB=F3
A错误,B正确。
故选BC。
8、图甲所示,绷紧的水平传送带始终以恒定速率v1运行,初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带。若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t图像(以地面为参考系)如图乙所示,已知v2>v1,则( )
A.t2时刻,小物块离A处的距离达到最大
B.t2时刻,小物块相对传送带滑动的距离达到最大
C.0~t2时间内,小物块受到的摩擦力方向一直向右
D.0~t3时间内,小物块始终受到大小不变的摩擦力作用
答案:BC
解析:
A.相对地面而言,小物块在0~t1小时间内,向左做匀减速运动,t1之后反向向右向右运动,故小物块在t1时刻离A处距离最大,A错误;
B.小物块在0~t1小时间内,向左做匀减速运动,相对传送带也是向左运动;t1~t2时间内,反向向右做匀加速运动,但速度小于传送带向右速度,仍是相对传送带向左运动,t2时刻两者同速,在t2~t3时间内,小物块相对于传送带静止一起向右匀速运动,所以t2时刻小物块相对传送带滑动的距离达到最大值,B正确;
C.由B中分析可知,0~t2时间内,小物块相对传送带一直向左运动,所以受到的摩擦力方向一直向右,C正确;
D.在0~t2时间内,小物块相对传送带一直向左运动,故小物块一直受向右的滑动摩擦力,在t2~t3时间内,小物块相对于传送带静止;小物块不受摩擦力作用,故D错误。
故选BC。
填空题
9、(1)钢球由静止开始做自由落体运动,落地时的速度为40m/s,g=10m/s2。则它在最后1s内下落的高度为______m;
(2)动车车厢内悬吊着一个质量为m的小球,动车匀加速行驶时,悬线偏离竖直方向的角度为θ并相对车厢保持静止,重力加速度为g。则动车的加速度大小为______;
(3)如图所示,光滑斜面上有一个重力为70N的小球被轻绳拴住悬挂在天花板上,已知绳子与竖直方向的夹角为45°,斜面倾角为37°,整个装置处于静止状态。sin37°=0.6,cos37°=0.8。则斜面对小球支持力的大小为______N。
答案: 35 gtanθ 50
解析:
(1)[1] 因为钢球由静止开始做自由落体运动,落地时的速度为40m/s,则钢球落地前最后一秒初的速度为
v1=v-gt=(40-10×1)ms=30ms
所以落地前最后一秒的平均速度为
v=v1+v2=35ms
所以落地前最后一秒的位移为
x=vt=35m
(2)[2]对小球受力分析,由牛顿第二定律得
mgtanθ=ma
故
a=gtanθ
(3)[3]对小球受力分析如图,将拉力和支持力沿水平方向和竖直方向分解得
Tsin45°=FNsin37°
Tcos45°+FNcos37°=mg
联立解得
FN=50N
10、如图,光滑固定斜面的倾角为30°,A、B两物体的质量之比为4∶1。B用不可伸长的轻绳分别与A和地面相连,开始时A、B离地高度相同。此时B物体上、下两绳拉力之比为_______,在C处剪断轻绳,当B落地前瞬间,A、B的速度大小之比为_______。
答案: 2:1 1:2
解析:
[1]设AB的质量分别为4m和m,对A分析可知,绳子的拉力
T1=4mgsin30∘=2mg
对B物体
T1=mg+T2
解得下边绳子的拉力为
T2=mg
则B物体上、下两绳拉力之比为2:1;
[2]设开始时AB距离地面的高度分别为h,则B落地时间
t=2hg
B落地速度
vB=2gh
此时A的速度
vA=at=gsin30∘t=122gh
即当B落地前瞬间,A、B的速度大小之比为1:2。
11、两个物体之间的作用总是_______的,物体间相互作用的这一对力,通常叫作_______和_______。
答案: 相互 作用力 反作用力
解析:
略
12、方法一:利用牛顿第二定律
先测量物体做自由落体运动的加速度g,再用天平测量物体的______,利用牛顿第二定律可得G=______。
答案: 质量m mg
解析:
略
解答题
13、如图所示,倾斜传送带长度L=5.8m,倾斜角度θ=37°,传送带与水平面平滑连接,光滑水平面上放置两个用弹簧连接的滑块B和C,传送带以速度v0=4m/s顺时针传动,现将质量m1=1kg的滑块A(可视为质点)轻放在传送带的最高端,已知滑块A与传送带间的动摩擦因数μ=0.5,滑块B和C的质量分别为m2=2kg、m3=1kg,滑块A与B发生弹性碰撞(碰撞时间极短),重力加速度取10m/s2,sin37°=0.6,cos37°=0.8,求:
(1)滑块A第一次到达传送带底端时速度大小;
(2)滑块A与传送带间因摩擦而产生的内能;
(3)滑块B、C与弹簧构成的系统在作用过程中,弹簧的最大弹性势能和滑块C的最大动能。
答案:(1)6m/s;(2)13.6J;(3)163J,1289J
解析:
(1)依题意,可得滑块A向下加速的加速度
a1=gsin37°+μgcos37°=10m/s2
达到传送带速度所用时间
t1=v0a1=0.4s
下滑位移
x1=12v0t1=0.8m
此后滑块A的加速度
a2=gsin37°-μgcos37°=2m/s2
设滑块A下滑到传送带底端时速度为v,则有
v2-v02=2a2L-x1
解得
v=6m/s
(2)滑块A第二段加速运动到传送带底端所用时间
t2=v-v0a2=1s
滑块A第一段加速运动过程与传送带间的相对位移
d1=v0t1-x1=0.8m
第二段加速运动过程与传送带间的相对位移
d2=L-x1-v0t2=1m
滑块A与B发生弹性碰撞,有
m1v=m1v1+m2v2
12m1v2=12m1v12+12m2v22
解得
v1=-2m/s,v2=4m/s
可知滑块A沿斜面上滑,然后返回水平面,但追不上滑块B,滑块A向上冲到最高点所用时间
t3=v1a1=0.2s
再次返回传送带底端所用时间
t4=t3=0.2s
与传送带相对位移
d3=v0t3+t4=1.6m
滑块A与传送带间因摩擦而产生的内能
E=μm1gcos37°d1+d2+d3=13.6J
(3)滑块B与C作用,当两者达到共同速度时,弹簧弹性势能最大,有
m2v2=m2+m3v共
解得
v共=83m/s
Ep=12m2v22-12m2+m3v共2=163J
当弹簧恢复原长时,滑块C有最大动能,由动量守恒定律和机械能守恒定律得
m2v2=m2v4+m3v3
12m2v22=12m2v42+12m3v32
解得
v3=163m/s
则滑块C的最大动能
Ek=12m3v32=1289J
14、在杂技节目“水流星”的表演中,碗的质量m1=0.1 kg,内部盛水质量m2=0.4 kg,拉碗的绳子长l=0.5 m,使碗在竖直平面内做圆周运动,如果碗通过最高点的速度v1=9 m/s,通过最低点的速度v2=10 m/s,g=10 m/s2,求碗在最高点时绳的拉力大小及水对碗的压力大小。
答案:76 N,60.8 N
解析:
解:对水和碗
m=m1+m2=0.5 kg
由牛顿第二定律可得
FT1+mg=mv12l
FT1=mv12l-mg=0.5×810.5N−0.5×10N=76 N
以水为研究对象,设最高点碗对水的压力为F1,则
F1+m2g=m2v12l
解得
F1=60.8 N
由牛顿第三定律可知,水对碗的压力大小F1′=F1=60.8 N,方向竖直向上。
15、如图所示,从A点以v0=4m/s的水平速度抛出一质量为m=1kg的小物块(可视为质点),当物块运动至B点时,恰好沿切线方向进入固定的光滑圆弧轨道BC,经圆弧轨道后滑上与C点等高、静止在粗糙水平面的长木板上,圆弧轨道C端切线水平.已知长木板的质量M=4kg,A、B两点距C点的高度分别为H=0.5m,h=0.15m,R=0.75m,物块与长木板之间的动摩擦因数μ1=0.5,长木板与地面间的动摩擦因数μ2=0.2,g取10m/s2,求:
(1)小物块运动至B点时的速度大小和方向与水平面夹角的正切值;
(2)小物块滑至C点时,对圆弧轨道C点的压力大小;
(3)长木板至少为多长,才能保证小物块不滑出长木板?
答案:(1)23m/s,74;(2)44.7N;(3)2.6m
解析:
(1)物块从A到B做平抛运动,有
H-h=12gt2
设在B点竖直方向的速度为vy,则
vy=gt
v=v02+vy2
代入数据解得
v=23m/s
方向与水平面的夹角为θ,则
tanθ=vyv0=74
(2)从A至C点,由动能定理得
mgH=12mv22-12mv02
设C点受到的支持力为FN,则有
FN-mg=mv22R
代入数据解得
v2=26m/s
FN≈44.7N
根据牛顿第三定律可知,物块对圆弧轨道C点的压力大小为44.7N.;
(3)由题意可知小物块对长木板的摩擦力
Ff=μ1mg=5N
长木板与地面间的最大静摩擦力近似等于滑动摩擦力
Ff'=μ2(M+m)g=10N
因
Ff<Ff'
所以小物块在长木板上滑动时,长木板静止不动.小物块在长木板上做匀减速运动,其加速度
a=μ1g=5m/s2
若到长木板右端时速度刚好为0,则长木板长度至少为
L=v222a=2610m=2.6m
16、如图所示,质量M=3kg且足够长的木板放在水平光滑的平面上,在水平恒力F=11N作用下由静止开始向右运动,当速度达到1m/s时,将质量m=4kg的物块轻轻放到木板的右端,已知物块与木板间摩擦因数μ=0.2,(g=10m/s2),求:
(1)物块经多长时间才与木板保持相对静止;
(2)物块与木板相对静止后,物块受到的摩擦力多大?
(3)全过程产生的热量是多少?
答案:(1)1s;(2)6.28N;(3)4J
解析:
(1)放上物体后,由牛顿第二定律可知:
物体加速度
a1=μg=2m/s2
板的加速度
a2=F-μmgM=1m/s2
当两物体达速度相等后保持相对静止,故
a1t=v+a2t
t=1s
(2)相对静止后,对整体
F=(M+m)a
对物体有
f=ma
解得
f=6.28N
(3)1s内物块的位移
x1=12a1t2=1m
木板的位移
x2=vt+12a2t2=1.5m
则相对路程
△x=0.5m
则全过程产生的热量
Q=f△x=μmg△x=4J
实验题
17、小王想测量家中自己锻炼用的两个不同沙袋的质量,但没有直接测量质量的工具,于是他利用家中已有的如下器材进行测量:悬挂沙袋的轻质细绳、大小和质量均不计的光滑定滑轮、一套总质量为1kg(各方块的质量已知)的玩具方块、毫米刻度尺、带有秒表软件的手机。请完成下列步骤。
(1)如图所示,两沙袋用轻绳跨过定滑轮连接安装好,设右边沙袋A的质量为m1、左边沙袋B的质量为m2。
(2)取出质量为m的玩具方块放入A中,剩余玩具方块都放入B中,放手后发现A下降、B上升。
(3)用毫米刻度尺测出A从静止下降的距离h,用手机中的秒表软件测出A下降距离h所用的时间t,则A下降的加速度大小a=__________(用h和t表示)。
(4)从B中取出部分玩具方块放入A中,以改变m,测量相应的加速度大小a,得到多组m及a的数据,利用图像处理数据。为使图像直观,应作出a随__________(选填“m”或“1m”)变化的关系图线。
(5)若图线的斜率k=2m/kg⋅s2,图线在纵轴上的截距b=1m/s2,取重力加速度大小g=10m/s2,则m1=__________kg、m2=__________kg。
答案: 2ht2 m 5.5 3.5
解析:
(3)[1]A下降距离h所用的时间t,据匀变速直线运动的位移公式可得
h=12at2
解得A下降的加速度大小为
a=2ht2
(4)[2]设玩具方块总质量为M,整体据牛顿第二定律可得
(m+m1)g-(M-m)g-m2g=(m1+m2+M)a
整理得
a=2gm1+m2+Mm+m1-m2-Mm1+m2+Mg
为使图像直观,应作出a随m变化的关系图线。
(5)[3][4]图线的斜率为
k=2gm1+m2+M
纵轴的截距为
b=m1-m2-Mm1+m2+Mg
带入数据解得m1=5.5kg、m2=3.5kg
18、某兴趣小组欲测量滑块与水平木板间的动摩擦因数,他们设计了一个实验,实验装置如图1所示。该小组同学首先将一端带滑轮的木板固定在水平桌面上,连接好其他装置,然后挂上重物,使滑块做匀加速运动,打点计时器在纸带上打出一系列点.
(1)图2是实验中获取的一条纸带的一部分,相邻两计数点间的距离如图所示,已知电源的频率为50 Hz,相邻两计数点间还有4个计时点未标出,根据图中数据计算的加速度a=___________ms2.(结果保留两位有效数字)
(2)为测定动摩擦因数,该小组同学事先用弹簧测力计测出滑块与重物的重力分别如图3、4所示,则图3对应的示数为_____________N,图4对应的示数为_______________N;
(3)重力加速度g取10m/s2,滑块与木板间的动摩擦因数μ=______________(结果保留两位有效数字)。
答案: 0.50 2.00 1.00 0.43
解析:
(1)[1].相邻两计数点间还有4个计时点未标出,则T=0.1s;根据Δx=aT2结合逐差法可知:
a=x6+x5+x4-x3-x2-x19T2 =(3.87+3.39+2.88-2.38-1.90-1.40)×10-29×0.12m/s2=0.50m/s2
(2)[2][3].则图3对应的示数为2.00N;图4对应的示数为1.00N;
(3)[4].对滑块以及重物的整体:
mg-μMg=(M+m)a
其中mg=1.00N,Mg=2N,
解得
μ=0.43
19、如图所示某同学在探究物体自由落体运动的规律实验中打出了一条纸带,A、B、C、D、E是纸带上依次打出的5个点, A到B、C、D、E之间的距离分别为2.00cm、4.38cm、7.14cm、10.28cm,打点计时器所接电源的频率为50Hz,当地的重力加速度大小g=9.8m/s2。
(1)打点计时器打下C点时,物体的速度大小为________ms(结果保留两位有效数字);
(2)物体运动的加速度大小为________ms2(结果保留两位有效数字);
(3)若该物体的质量为2kg,则在运动过程中,该物体受到的平均阻力f=________N。
答案: 1.3 9.5 0.6
解析:
(1)[1]根据题意知纸带上相邻计数点间的时间间隔
T=0.02s
根据匀变速直线运动中间时刻瞬时速度等于该过程的平均速度得
vC=xBD2T=(7.14-2.00)×10-22×0.02m/s≈1.3m/s
(2)[2]根据逐差法得加速度为
a=xCE-xAC4T2=(10.28-4.38-4.38)×10-24×0.022m/s2=9.5m/s2
(3)[3]根据牛顿第二定律
mg-f=ma
得
f=mg-ma
代入数据解得
f=0.6N
20、理想实验有时能更深刻地反映自然规律。伽利略设想了一个理想实验,如图所示。下面是关于该实验被打乱的步骤:
①减小第二个斜面的倾角,小球在这个斜面上仍然要到达原来的高度。
②如图为两个对接的斜面,让小球沿一个斜面从静止滚下,小球将滚上另一个斜面。
③如果没有摩擦,小球将到达原来的高度。
④继续减小第二个斜面的倾角,最后使它成为水平面,小球将沿水平面做持续的匀速运动。
(1)请将上述理想实验的设想步骤按照正确的顺序排列________(填写序号即可)。
(2)在上述的设想实验步骤中,有的属于可靠的实验事实,有的则是理想化的推论,请问步骤②属于________________。
答案: ②③①④ 可靠的实验事实
解析:
(1)[1]本题向我们展示了科学史上著名的理想实验的思想方法,即在实验事实的基础上,经过合理的推理、想象,获取结论,正确的排列顺序是②③①④。
(2)[2]针对题目所述的实验步骤,步骤②属于可靠的实验事实。
28
展开阅读全文