收藏 分销(赏)

平面向量内积的坐标表示.ppt

上传人:精*** 文档编号:1078429 上传时间:2024-04-12 格式:PPT 页数:21 大小:851.04KB
下载 相关 举报
平面向量内积的坐标表示.ppt_第1页
第1页 / 共21页
平面向量内积的坐标表示.ppt_第2页
第2页 / 共21页
点击查看更多>>
资源描述
7.107.10平面向量内积的坐平面向量内积的坐标表示标表示1、掌握用直角坐标计算向量的内积公式。、掌握用直角坐标计算向量的内积公式。2 2、掌握向量长度、垂直的坐标表示及夹、掌握向量长度、垂直的坐标表示及夹角公式,角公式,掌握平面两点间距离公式掌握平面两点间距离公式;学习目标重点重点难点难点课型课型学法学法通过推导和题组训练,理解并掌握通过推导和题组训练,理解并掌握向量向量长度、垂直、夹角及距离公式长度、垂直、夹角及距离公式。能准确运用向量内积的坐标表示能准确运用向量内积的坐标表示长度、长度、垂直、夹角及距离公式垂直、夹角及距离公式等结论,解决有等结论,解决有关问题。关问题。新新 课课启发式、练习法启发式、练习法达标过程达标过程一、复习导入一、复习导入1.(5,7)2021/10/104 我们学过两向量的和与差可我们学过两向量的和与差可以转化为它们相应的坐标来运算以转化为它们相应的坐标来运算,那么那么怎样用怎样用?2021/10/105二、新课学习二、新课学习1 1、平面向量内积的坐标表示、平面向量内积的坐标表示如图,如图,是是x x轴上的单位向量,轴上的单位向量,是是y y轴上的单位向量,轴上的单位向量,x y o B(b1,b2)A(a1,a2)1 1 0 .;下面研究怎样用下面研究怎样用设两个非零向量设两个非零向量 的坐标是的坐标是(a1,a2),的坐标是的坐标是(b1,b2),则则o x B(b1,b2)A(a1,a2)y 那么x o(b1,b2)(a1,a2)y 根据平面向量内积的坐标表根据平面向量内积的坐标表示,向量的示,向量的内积的运算内积的运算可可转化转化为为向量的向量的坐标运算坐标运算。故故两个向量的两个向量的内积内积等于它们等于它们横坐标的横坐标的乘积乘积与与纵坐标乘积纵坐标乘积之之和和。热身热身解:探究新知探究新知2021/10/10102、向量的长度和两点间的距离公式3 3、两向量垂直、两向量垂直4 4、两向量夹角公式的坐标运算、两向量夹角公式的坐标运算收获到了收获到了2021/10/1014三、基本技能的形成与巩固三、基本技能的形成与巩固解:-155不垂直不垂直垂直垂直1.填空填空抢答题抢答题 例例2 2 已知已知A(1A(1,2)2),B(2B(2,3)3),C(-2C(-2,5)5),证明证明 ABCABC是直角三角形是直角三角形.A(1,2)B(2,3)C(-2,5)x0y 注:两个向量的内积是否为零是判断相应注:两个向量的内积是否为零是判断相应的两条直线是否垂直的重要方法之一。的两条直线是否垂直的重要方法之一。如证明四边形是矩形,三角形的高,菱形如证明四边形是矩形,三角形的高,菱形对角线垂直等。对角线垂直等。已知ABC三个顶点坐标A(-1,2),B(3,1),C(2,-3),求证:ABC是等腰直角三角形.小结小结 (1)掌握平面向量内积的坐标表示,即两个向量的内积等于它们对应坐标的乘积之和;(2)要学会运用平面向量内积的坐标表示解决有关长度、角度及垂直问题.节清内容节清内容课本课本36 组组1、2、3、5、7中任选一题中任选一题,4.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服