收藏 分销(赏)

06离散型随机变量的均值.doc

上传人:精**** 文档编号:10701085 上传时间:2025-06-10 格式:DOC 页数:10 大小:317.50KB 下载积分:8 金币
下载 相关 举报
06离散型随机变量的均值.doc_第1页
第1页 / 共10页
06离散型随机变量的均值.doc_第2页
第2页 / 共10页


点击查看更多>>
资源描述
2. 3离散型随机变量的均值与方差 2.3.1离散型随机变量的均值 教学目标: 知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望. 过程与方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),则Eξ=np”.能熟 练地应用它们求相应的离散型随机变量的均值或期望。 情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文 价值。 教学重点:离散型随机变量的均值或期望的概念 教学难点:根据离散型随机变量的分布列求出均值或期望 授课类型:新授课 课时安排:4课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 若是随机变量,是常数,则也是随机变量 并且不改变其属性(离散型、连续型) 5. 分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…, ξ取每一个值xi(i=1,2,…)的概率为,则称表 ξ x1 x2 … xi … P P1 P2 … Pi … 为随机变量ξ的概率分布,简称ξ的分布列 6. 分布列的两个性质: ⑴Pi≥0,i=1,2,…; ⑵P1+P2+…=1. 7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是 ,(k=0,1,2,…,n,). 于是得到随机变量ξ的概率分布如下: ξ 0 1 … k … n P … … 称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数,并记=b(k;n,p). 8. 离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“”表示在第k次独立重复试验时事件第一次发生.如果把k次试验时事件A发生记为、事件A不发生记为,P()=p,P()=q(q=1-p),那么 (k=0,1,2,…, ).于是得到随机变量ξ的概率分布如下: ξ 1 2 3 … k … P … … 称这样的随机变量ξ服从几何分布 记作g(k,p)= ,其中k=0,1,2,…, . 二、讲解新课: 根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下 ξ 4 5 6 7 8 9 10 P 0.02 0.04 0.06 0.09 0.28 0.29 0.22 在n次射击之前,可以根据这个分布列估计n次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望 根据射手射击所得环数ξ的分布列, 我们可以估计,在n次射击中,预计大约有     次得4环;     次得5环; …………   次得10环. 故在n次射击的总环数大约为 , 从而,预计n次射击的平均环数约为 . 这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平. 对于任一射手,若已知其射击所得环数ξ的分布列,即已知各个(i=0,1,2,…,10),我们可以同样预计他任意n次射击的平均环数: …. 1. 均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为 ξ x1 x2 … xn … P p1 p2 … pn … 则称 …… 为ξ的均值或数学期望,简称期望.   2. 均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 3. 平均数、均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令…,则有…,…,所以ξ的数学期望又称为平均数、均值 4. 均值或期望的一个性质:若(a、b是常数),ξ是随机变量,则η也是随机变量,它们的分布列为 ξ x1 x2 … xn … η … … P p1 p2 … pn … 于是…… =……)……) =, 由此,我们得到了期望的一个性质: 5.若ξB(n,p),则Eξ=np 证明如下: ∵ , ∴ 0×+1×+2×+…+k×+…+n×. 又∵ , ∴ ++…++…+. 故  若ξ~B(n,p),则np. 三、讲解范例: 例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分的期望 解:因为, 所以 例2. 一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分 学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望 解:设学生甲和乙在这次英语测验中正确答案的选择题个数分别是,则~ B(20,0.9),, 由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5和5 所以,他们在测验中的成绩的期望分别是: 例3. 根据气象预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为0. 01.该地区某工地上有一台大型设备,遇到大洪水时要损失60 000元,遇到小洪水时要损失10000元.为保护设备,有以下3 种方案: 方案1:运走设备,搬运费为3 800 元. 方案2:建保护围墙,建设费为2 000 元.但围墙只能防小洪水. 方案3:不采取措施,希望不发生洪水. 试比较哪一种方案好. 解:用X1 、X2和X3分别表示三种方案的损失. 采用第1种方案,无论有无洪水,都损失3 800 元,即 X1 = 3 800 . 采用第2 种方案,遇到大洪水时,损失2 000 + 60 000=62 000 元;没有大洪水时,损失2 000 元,即 同样,采用第 3 种方案,有 于是, EX1=3 800 , EX2=62 000×P (X2 = 62 000 ) + 2 00000×P (X2 = 2 000 ) = 62000×0. 01 + 2000×(1-0.01) = 2 600 , EX3 = 60000×P (X3 = 60000) + 10 000×P(X3 =10 000 ) + 0×P (X3 =0) = 60 000×0.01 + 10000×0.25=3100 . 采取方案2的平均损失最小,所以可以选择方案2 . 值得注意的是,上述结论是通过比较“平均损失”而得出的.一般地,我们可以这样来理解“平均损失”:假设问题中的气象情况多次发生,那么采用方案 2 将会使损失减到最小.由于洪水是否发生以及洪水发生的大小都是随机的,所以对于个别的一次决策,采用方案 2 也不一定是最好的. 例4.随机抛掷一枚骰子,求所得骰子点数的期望 解:∵, =3.5 例5.有一批数量很大的产品,其次品率是15%,对这批产品进行抽查,每次抽取1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品为止,但抽查次数不超过10次求抽查次数的期望(结果保留三个有效数字) 解:抽查次数取110的整数,从这批数量很大的产品中抽出1件检查的试验可以认为是彼此独立的,取出次品的概率是0.15,取出正品的概率是0.85,前次取出正品而第次(=1,2,…,10)取出次品的概率: (=1,2,…,10) 需要抽查10次即前9次取出的都是正品的概率:由此可得的概率分布如下: 1 2 3 4 5 6 7 8 9 10 0.15 0.1275 0.1084 0.092 0.0783 0.0666 0.0566 0.0481 0.0409 0.2316 根据以上的概率分布,可得的期望 例6.随机的抛掷一个骰子,求所得骰子的点数ξ的数学期望. 解:抛掷骰子所得点数ξ的概率分布为 ξ 1 2 3 4 5 6 P 所以 1×+2×+3×+4×+5×+6× =(1+2+3+4+5+6)×=3.5. 抛掷骰子所得点数ξ的数学期望,就是ξ的所有可能取值的平均值. 例7.某城市出租汽车的起步价为10元,行驶路程不超出4km时租车费为10元,若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足lkm的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机经常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量.设他所收租车费为η (Ⅰ)求租车费η关于行车路程ξ的关系式; (Ⅱ)若随机变量ξ的分布列为 ξ 15 16 17 18 P 0.1 0.5 0.3 0.1 求所收租车费η的数学期望. (Ⅲ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟? 解:(Ⅰ)依题意得 η=2(ξ-4)十10,即 η=2ξ+2; (Ⅱ) ∵ η=2ξ+2 ∴ 2Eξ+2=34.8 (元) 故所收租车费η的数学期望为34.8元.   (Ⅲ)由38=2ξ+2,得ξ=18,5(18-15)=15   所以出租车在途中因故停车累计最多15分钟 四、课堂练习: 1. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以表示取出球的最大号码,则( ) A.4;  B.5;  C.4.5;  D.4.75 答案:C 2. 篮球运动员在比赛中每次罚球命中的1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求 ⑴他罚球1次的得分ξ的数学期望; ⑵他罚球2次的得分η的数学期望; ⑶他罚球3次的得分ξ的数学期望. 解:⑴因为,,所以 1×+0× ⑵η的概率分布为 η 0 1 2 P 所以 0×+1×+2×=1.4. ⑶ξ的概率分布为 ξ 0 1 2 3 P    所以 0×+1×+2×=2.1. 3.设有m升水,其中含有大肠杆菌n个.今取水1升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ的数学期望. 分析:任取1升水,此升水中含一个大肠杆菌的概率是,事件“ξ=k”发生,即n个大肠杆菌中恰有k个在此升水中,由n次独立重复实验中事件A(在此升水中含一个大肠杆菌)恰好发生k次的概率计算方法可求出P(ξ=k),进而可求Eξ.   解:记事件A:“在所取的1升水中含一个大肠杆菌”,则P(A)=.     ∴ P(ξ=k)=Pn(k)=C)k(1-)n-k(k=0,1,2,….,n).   ∴ ξ~B(n,),故 Eξ =n×= 五、小结 :(1)离散型随机变量的期望,反映了随机变量取值的平均水平; (2)求离散型随机变量ξ的期望的基本步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ 公式E(aξ+b)= aEξ+b,以及服从二项分布的随机变量的期望Eξ=np 六、课后作业:P64-65练习1,2,3,4 P69 A组1,2,3 1.一袋子里装有大小相同的3个红球和两个黄球,从中同时取出2个,则其中含红球个数的数学期望是 (用数字作答) 解:令取取黄球个数 (=0、1、2)则的要布列为 0 1 2 p 于是 E()=0×+1×+2×=0.8 故知红球个数的数学期望为1.2 2.袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记0分,每取到一个白球记1分,每取到一个红球记2分,用表示得分数 ①求的概率分布列 ②求的数学期望 解:①依题意的取值为0、1、2、3、4 =0时,取2黑 p(=0)= =1时,取1黑1白 p(=1)= =2时,取2白或1红1黑p(=2)= + =3时,取1白1红,概率p(=3)= =4时,取2红,概率p(=4)= 0 1 2 3 4 p ∴分布列为 (2)期望E=0×+1×+2×+3×+4×= 3.学校新进了三台投影仪用于多媒体教学,为保证设备正常工作,事先进行独立试验,已知各设备产生故障的概率分别为p1、p2、p3,求试验中三台投影仪产生故障的数学期望 解:设表示产生故障的仪器数,Ai表示第i台仪器出现故障(i=1、2、3) 表示第i台仪器不出现故障,则: p(=1)=p(A1··)+ p(·A2·)+ p(··A3) =p1(1-p2) (1-p3)+ p2(1-p1) (1-p3)+ p3(1-p1) (1-p2) = p1+ p2+p3-2p1p2-2p2p3-2p3p1+3p1p2p3 p(=2)=p(A1· A2·)+ p(A1··)+ p(·A2·A3) = p1p2 (1-p3)+ p1p3(1-p2)+ p2p3(1-p1) = p1p2+ p1p3+ p2p3-3p1p2p3 p(=3)=p(A1· A2·A3)= p1p2p3 ∴=1×p(=1)+2×p(=2)+3×p(=3)= p1+p2+p3 注:要充分运用分类讨论的思想,分别求出三台仪器中有一、二、三台发生故障的概率后再求期望 4.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,含红球个数的数学期望是 1.2 解:从5个球中同时取出2个球,出现红球的分布列为 0 1 2 P 5. 、两个代表队进行乒乓球对抗赛,每队三名队员,队队员是,队队员是,按以往多次比赛的统计,对阵队员之间胜负概率如下: 对阵队员 A队队员胜的概率 B队队员胜的概率 A1对B1 A2对B2 A3对B3 现按表中对阵方式出场,每场胜队得1分,负队得0分,设队,队最后所得分分别为, (1)求,的概率分布; (2)求, 解:(Ⅰ),的可能取值分别为3,2,1,0 根据题意知,所以 (Ⅱ); 因为,所以 七、板书设计(略) 八、教学反思: (1)离散型随机变量的期望,反映了随机变量取值的平均水平; (2)求离散型随机变量ξ的期望的基本步骤: ①理解ξ的意义,写出ξ可能取的全部值; ②求ξ取各个值的概率,写出分布列; ③根据分布列,由期望的定义求出Eξ 公式E(aξ+b)= aEξ+b,以及服从二项分布的随机变量的期望Eξ=np 。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服