资源描述
三角函数的应用题试题汇编
2016年12月20日三角函数应用题
一.解答题(共30小题)
1.甲楼楼高50米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时,求:
(1)如果两楼相距50米,那么甲楼的影子落在乙楼上有多高?
(2)小明住在乙楼16m高(地板距地面的距离)的五层楼上,要是冬至中午12时阳光不被挡住,两楼至少距离多少米(结果精确到1m,参考数据:≈1.732)?
2.小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明在点A处测得热气球底部点C、中部点D的仰角分别为50°和60°,已知点O为热气球中心,EA⊥AB,OB⊥AB,OB⊥OD,点C在OB上,AB=30m,且点E、A、B、O、D在同一平面内,根据以上提供的信息,求热气球的直径约为多少米?(精确到0.1m)
(参考数据:sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)
3.如图,现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.6cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上,已知sinα=.
(1)求一个矩形卡通图案的面积;
(2)若小聪在第一个图案的右边以同样的方式继续盖印,最多能印几个完整的图案?
4.某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距6米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:≈1.41,≈1.73)
5.某小区内因道路较窄,实行机动车单向行驶的措施,所以在车位设计上比较人性化.如图是两个车位的设计示意图,按照实际情况每个车位设计成长5m、宽2.4m的矩形,且满足EF、MN与两个车位所占的矩形ABCD场地的BC边形成的夹角为30°,求BC边的长.
6.如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)
7.如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).求教学楼AB的高度.(参考数据:sin22°≈,cos22°≈,tan22°≈)
8.已知:如图,在△ABC中,AB=6,BC=8,∠B=60°.求:
(1)△ABC的面积;
(2)∠C的余弦值.
9.如图,一个水库大坝的横截面是梯形,其横截面的迎水坡AD的坡比为2:3,背水坡BC的坡比为4:3,大坝高DE为20m.坝顶宽CD为45m.求大坝的横截面积.
10.我市新农村建设中,对乡村道路进行改造,车溪乡公路有一段斜坡长为20米,坡角∠CBM=45°,坡底路面AB与坡顶路面CD平行,如图①.
(1)求坡高CM(结果保留根号);
(2)为方便通行,现准备把坡角降为30°,为节约成本,计划把原斜坡BC上的半部分挖去,填到原斜坡BC的下半部分,如图②,点O为原斜坡BC的中点,EF为新斜坡,求原坡顶需要挖掉的长度(即CF的长度,结果精确到0.1米)(参考数据:(,;可以用科学记算器)
11.某大型购物中心为方便顾客地铁换乘,准备在底层至B1层之间安装电梯,截面图如图所示,底层与B1层平行,层高AD为9米,A、B间的距离为6米,∠ACD=20°.
(1)请问身高1.9米的人在竖直站立的情况下搭乘电梯,在B处会不会碰到头?请说明理由.
(2)若采取中段平台设计(如图虚线所示).已知平台EF∥DC,且AE段和FC段的坡度i=1:2,求平台EF的长度.
【参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36】
12.某工厂大楼后面紧邻着一个土坡,坡上面是一块平地,如图所示,BC∥AD,斜坡AB长22m,坡角∠BAD=60°,为了防止山体滑坡,保障安全,工厂决定对该土坡进行改造.经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡.
(1)求改造前坡顶与地面的距离BE的长;
(2)为确保安全,工厂计划改造时保持坡脚A不动,坡顶B沿BC削进到F点处,问BF至少是多少米?
13.如图,在一个坡角为40°的斜坡上有一棵树BC,树高4米.当太阳光AC与水平线成70°角时,该树在斜坡上的树影恰好为线段AB,求树影AB的长.(结果保留一位小数)
(参考数据:sin20°=0.34,tan20°=0.36,sin30°=0.50,tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,tan70°=2.75)
14.如图,在夕阳西下的傍晚,某人看见高压电线的铁塔在阳光的照射下,铁塔的影子的一部分落在小山的斜坡上,为了测得铁塔的高度,他测得铁塔底部B到小山坡脚D的距离为2米,铁塔在小山斜坡上的影长DC为3.4米,斜坡的坡度i=1:1.875,同时他测得自己的影长NH﹦336cm,而他的身长MN为168cm,求铁塔的高度.
15.如图,山顶建有一座铁塔,塔高CD=20m,某人在点A处,测得塔底C的仰角为45°,塔顶D的仰角为60°,求山高BC(精确到1m,参考数据:≈1.41,≈1.73)
16.如图,河对岸有一高层建筑物AB,为测其高,在C处由点D用测量仪测得顶端A的仰角为30°,向高层建筑物前进50米,到达E处,由点F测得顶点A的仰角为45°,已知测量仪高CD=EF=1.2米,求高层建筑物AB的高.(结果精确到0.1米,,)
17.如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.
18.如图所示,当一热气球在点A处时,其探测器显示,从热气球看高楼顶部点B的仰角为45°,看高楼底部点C的俯角为60°,这栋楼高120米,那么热气球与高楼的水平距离为多少米?(结果精确到0.1米,参考数据:)
19.如图,大楼AB高16米,远处有一塔CD,某人在楼底B处测得塔顶的仰角为38.5°,爬到楼顶A处测得塔顶的仰角为22°,求塔高CD与大楼与塔之间的距离BD的长.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80 )
20.如图,我校九年级某班数学课外活动小组利用周末开展课外实践活动,他们要在佳山公路上测量“佳山”高AB.于是他们采用了下面的方法:在佳山公路上选择了两个观察点C、D(C、D、B在一条直线上),从C处测得山顶A的仰角为30°,在D处测得山顶A的仰角为45°,已知测角仪的高CE与DF的高为1.5m,量得CD=450m.请你帮助他们计算出佳山高AB.(精确到1m,,)
21.如图,某建筑物BC上有一旗杆AB,小明在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,小明的观测点与地面的距离EF为1.6m.
(1)求建筑物BC的高度;
(2)求旗杆AB的高度.
(结果精确到0.1m.参考数据:≈1.41,sin52°≈0.79,tan52°≈1.28)
22.如图,小刚同学在綦江南州广场上观测新华书店楼房墙上的电子屏幕CD,点A是小刚的眼睛,测得屏幕下端D处的仰角为30°,然后他正对屏幕方向前进了6米到达B处,又测得该屏幕上端C处的仰角为45°,延长AB与楼房垂直相交于点E,测得BE=21米,请你帮小刚求出该屏幕上端与下端之间的距离CD.(结果保留根号)
23.广场上有一个充满氢气的气球P,被广告条拽着悬在空中,甲乙二人分别站在E、F处,他们看气球的仰角分别是30°、45°,E点与F点的高度差AB为1米,水平距离CD为5米,FD的高度为0.5米,请问此气球有多高?
(结果保留到0.1米)
24.如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为多少?
25.天然气管道铺设工程从B向正东方向进行,如图所示,从B处测得A点位于B点北偏东60°,从B向东前进400m到达D点,在D点测得A点位于北偏东45°方向,以A点为中心,半径为500m的圆形区域为居民住宅区,请计算后回答:天然气管道铺设工程是否会穿过居民住宅区?(≈1.732)
26.如图,某公园有一小亭A,它周围100米内是文物保持区,某勘探队员在公园由西向东行走,在B处测得小亭A在北偏东60°的方向上,行走200米后到达C处,此时测得小亭A在北偏东30°的方向上,若该公园打算沿BC的方向修一条笔直的小路,则此小路是否会通过文物保护区?请通过计算说明.
27.马航飞机失联后,海空军部队第一时间赴相关海域开展搜寻工作,某舰船在O地修整时发现在它的北偏西60°,距离它40km的A地有一艘搜索船向正东方向航行,经过2小时后,发现此船已到达它东北方向的B处.问搜索船从A处到B处的航速是多少千米/小时(精确到1千米/小时)?(参考数据≈1.414,≈1.732,≈2.236)
28.如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,求A,B之间的距离.(取≈1.7,结果精确到0.1海里).
29.某船向正东航行,在A处望见灯塔C在东北方向,前进到B处望见灯塔C在北偏西30°,又航行了半小时到D处,望见灯塔C恰在西北方向,若船速为每小时40海里.求A、D两点间的距离.(结果不取近似值)
30.如图,某乡村小学有A、B两栋教室,B栋教室在A栋教室正南方向36米处,在A栋教室西南方向300米的C处有一辆拖拉机以每秒8米的速度沿北偏东60°的方向CF行驶,若拖拉机的噪声污染半径为100米,试问A、B两栋教室是否受到拖拉机噪声的影响若有影响,影响的时间有多少秒?(计算过程中取1.7,各步计算结果精确到整数)
2016年12月20日三角函数应用题
参考答案与试题解析
一.解答题(共30小题)
1.甲楼楼高50米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时,求:
(1)如果两楼相距50米,那么甲楼的影子落在乙楼上有多高?
(2)小明住在乙楼16m高(地板距地面的距离)的五层楼上,要是冬至中午12时阳光不被挡住,两楼至少距离多少米(结果精确到1m,参考数据:≈1.732)?
【分析】(1)根据题意得出CD=50m,∠ACD=30°,再利用AD=CDtan30°求出即可;
(2)根据题意得出BF=16m,∠ABC=30°,再利用BC=求出即可.
【解答】解:(1)如图1,过点C作CD⊥AD于点D,
由题意可得出:CD=50m,∠ACD=30°,
∴AD=CDtan30°=50×≈29(m),
∴甲楼的影子落在乙楼上有:50﹣29=21(m);
(2)如图2,过点B作CB⊥AC于点C,
由题意可得出:BF=16m,∠ABC=30°,
∴AC=50﹣16=34(m),
∴BC===34≈59(m),
答:要是冬至中午12时阳光不被挡住,两楼至少距离59米.
【点评】本题考查了特殊角的三角函数值,三角函数值和边长的关系,根据题意画出图形是解题的关键.
2.小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明在点A处测得热气球底部点C、中部点D的仰角分别为50°和60°,已知点O为热气球中心,EA⊥AB,OB⊥AB,OB⊥OD,点C在OB上,AB=30m,且点E、A、B、O、D在同一平面内,根据以上提供的信息,求热气球的直径约为多少米?(精确到0.1m)
(参考数据:sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)
【分析】过E点作EF⊥OB于F,过D点作DG⊥EF于G.在Rt△CEF中,根据三角函数得到CF,在Rt△DEG中,根据三角函数得到DG=EG,设热气球的直径为x米,得到关于x的方程,解方程即可求解.
【解答】解:如图,过E点作EF⊥OB于F,过D点作DG⊥EF于G.
在Rt△CEF中,CF=EF•tan50°=AB•tan50°=35.76m,
在Rt△DEG中,DG=EG•tan60°=EG,
设热气球的直径为x米,则
35.76+x=(30﹣x),
解得x≈11.9.
故热气球的直径约为11.9米.
【点评】考查了解直角三角形的应用,三角函数的知识,方程思想,关键是作出辅助线构造直角三角形.
3.(2016•路桥区一模)如图,现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.6cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上,已知sinα=.
(1)求一个矩形卡通图案的面积;
(2)若小聪在第一个图案的右边以同样的方式继续盖印,最多能印几个完整的图案?
【分析】(1)如图,在Rt△BCE中,由sinα=可以求出BC,在矩形ABCD中由∠BCD=90°得到∠BCE+∠FCD=90°,又在Rt△BCE中,利用已知求出条件∠FCD=∠CBE,然后在Rt△FCD中,由cos∠FCD=求出CD,因此求出了矩形图案的长和宽;求得面积;
(2)如图,在Rt△ADH中,易求得∠DAH=∠CBE.由cos∠DAH=,求出AH,在Rt△CGH中,由tan∠GCH=求出GH,最后即可确定最多能摆放多少块矩形图案,即最多能印几个完整的图案.
【解答】解:(1)如图,在Rt△BCE中,
∵sinα=,
∴BC===1
∵矩形ABCD中,
∴∠BCD=90°,
∴∠BCE+∠FCD=90°,
又∵在Rt△BCE中,
∴∠EBC+∠BCE=90°,
∴∠FCD=∠CBE.
在Rt△FCD中,
∵cos∠FCD=,
∴CD==1.5
∴卡通图案的面积为1.5cm2.
(2)如图,在Rt△ADH中,易求得∠DAH=∠CBE.
∵cos∠DAH=,
∴AH==1.25
在Rt△CGH中,∠GCH=∠CBE.
∵tan∠GCH=,
∴GH=0.45
又∵10×1.25+0.45>12,9×1.25+0.45<12,
∴最多能印9个完整的图案.
【点评】此题主要考查矩形的性质、解直角三角形等知识,难度较大,是一个综合性很强的题目,有利于培养同学们钻研和探索问题的精神.
4.(2015•鄂城区模拟)某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距6米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:≈1.41,≈1.73)
【分析】过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=6米,即可得出关于x的方程,解出即可.
【解答】解:过点C作CD⊥AB于点D,
设CD=x,
在Rt△ACD中,∠CAD=30°,
则AD=CD=x,
在Rt△BCD中,∠CBD=45°,
则BD=CD=x,
由题意得x﹣x=6,
解得:x═3(+1)≈8.2.
答:生命所在点C的深度为8.2米.
【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数知识表示出相关线段的长度,注意方程思想的运用.
5.(2014•江南区校级模拟)某小区内因道路较窄,实行机动车单向行驶的措施,所以在车位设计上比较人性化.如图是两个车位的设计示意图,按照实际情况每个车位设计成长5m、宽2.4m的矩形,且满足EF、MN与两个车位所占的矩形ABCD场地的BC边形成的夹角为30°,求BC边的长.
【分析】由题意可根据已知线段和三角函数分别得出BE、EM和CM的长度,将它们的长度相加即可得到BC边的长.
【解答】解:在Rt△AHG中,HG=2.4m,
∴AH=HG•tan30°=0.8m,
在Rt△ABE中,AE=(5+0.8)m,
∴BE=AE•sin30°=(2.5+0.4)m,
在Rt△EFM中,EF=2.4m,
∴EM=EF÷cos30°=0.8m,
在Rt△MNC中,MN=2.4m,
∴MC=MN•cos30°=1.2m,
∴BC=BE+EM+CM=(2.5+2.4)m.
答:BC边的长是(2.5+2.4)m.
【点评】考查了解直角三角形的应用,本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.
6.(2013•呼和浩特)如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)
【分析】过C作CD⊥AB于D,在Rt△ACD中,根据AC=10,∠A=30°,解直角三角形求出AD、CD的长度,然后在Rt△BCD中,求出BD、BC的长度,用AC+BC﹣(AD+BD)即可求解.
【解答】解:过C作CD⊥AB于D,
在Rt△ACD中,
∵AC=10,∠A=30°,
∴DC=ACsin30°=5,
AD=ACcos30°=5,
在Rt△BCD中,
∵∠B=45°,
∴BD=CD=5,BC=5,
则用AC+BC﹣(AD+BD)=10+5﹣(5+5)=5+5﹣5(千米).
答:汽车从A地到B地比原来少走(5+5﹣5)千米.
【点评】本题考查了解直角三角形的应用,难度适中,解答本题的关键是作三角形的高建立直角三角形幷解直角三角形.
7.(2013•清河区校级模拟)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).求教学楼AB的高度.(参考数据:sin22°≈,cos22°≈,tan22°≈)
【分析】首先构造直角三角形△AEM,利用tan22°=,求出即可教学楼AB的高度.
【解答】解:过点E作EM⊥AB,垂足为M.
设AB为x(m).
∵Rt△ABF中,∠AFB=45°,
∴BF=AB=x,
∴BC=BF+FC=x+13;
∵在Rt△AEM中,∠AEM=22°,
AM=AB﹣BM=AB﹣CE=x﹣2,
∴tan22°=,
=,
x=12.
即教学楼的高为12m.
【点评】此题主要考查了解直角三角形的应用,根据已知得出tan22°=是解题关键.
8.(2013•崇明县一模)已知:如图,在△ABC中,AB=6,BC=8,∠B=60°.求:
(1)△ABC的面积;
(2)∠C的余弦值.
【分析】(1)首先作AH⊥BC,再利用∠B=60°,AB=6,求出BH=3,AH=3,即可求出答案;
(2)利用Rt△ACH中,AH=3,CH=5,求出AC进而求出∠C的余弦值.
【解答】解:(1)作AH⊥BC,垂足为点H.
在Rt△ABH中,∵∠AHB=90°,∠B=60°,AB=6,
∴BH=3,AH=3,
∴S△ABC=×8×3=12,
(2)∵BC=8,BH=3,∴CH=5.
在Rt△ACH中,∵AH=3,CH=5,
∴AC=2.
∴cosC===.
【点评】此题主要考查了解直角三角形的应用,根据已知构建直角三角形得出是解题关键.
9.如图,一个水库大坝的横截面是梯形,其横截面的迎水坡AD的坡比为2:3,背水坡BC的坡比为4:3,大坝高DE为20m.坝顶宽CD为45m.求大坝的横截面积.
【分析】利用三角函数求出AE、BF的长,又知道,DC=EF,求出EF的长,利用梯形面积公式即可解答.
【解答】解:∵=,DE=20,
∴=,
∴AE=30,
∵=,CF=20,
∴=,
∴FB=15,
∴AB=AE+EF+FB=30+45+15=90(米),
∴S=×(45+90)×20=1350(平方米).
∴大坝的横截面积为1350平方米.
【点评】本题考查了解直角三角形的应用﹣﹣坡度坡角问题,熟悉三角函数和梯形面积公式是解题的关键.
10.我市新农村建设中,对乡村道路进行改造,车溪乡公路有一段斜坡长为20米,坡角∠CBM=45°,坡底路面AB与坡顶路面CD平行,如图①.
(1)求坡高CM(结果保留根号);
(2)为方便通行,现准备把坡角降为30°,为节约成本,计划把原斜坡BC上的半部分挖去,填到原斜坡BC的下半部分,如图②,点O为原斜坡BC的中点,EF为新斜坡,求原坡顶需要挖掉的长度(即CF的长度,结果精确到0.1米)(参考数据:(,;可以用科学记算器)
【分析】(1)根据勾股定理就可以直接求出CM即可;
(2)作FN⊥EM于点N,根据矩形的性质可以得出FN的值,由勾股定理就可以求出EN的值,从而求出EB的值,再由△EBO≌△FCO就可以求出结论.
【解答】解:(1)∵CM⊥BM,
∴∠CMB=90°.
∵∠CBM=45°,
∴∠BCM=45°,
∴∠BMC=∠BCM,
∴BM=CM.
在Rt△BMC中,由勾股定理,得
BC2=CM2+BM2,
∴400=2CM2,
∴CM=10.
答:CM=10;
(2)作FN⊥EM于点N,
∴∠FNB=90°.
∵AB∥CD,
∴∠EBO=∠FCO,∠BEO=∠CFO,∠FCM=∠BMC=90°,
∴四边形CMNF为矩形,
∴CM=FN=10,
∵∠FEN=30°,
∴EF=2FN=20.
在Rt△EFN中,由勾股定理,得
EN=10.
∴EB=10﹣10
∵点O为BC的中点,
∴BO=CO.
在△EBO和△FCO中
,
∴△EBO≌△FCO(AAS),
∴BE=CF,
∴CF=10×2.499﹣10×1.414≈10.9米.
答:原坡顶需要挖掉的长度CF为10.9米.
【点评】本题考查了勾股定理的运用,等腰直角三角形的运用,直角三角形的性质的运用,矩形的判定与性质的运用,全等三角形的判定与性质的运用,解答时运用勾股定理求解是关键.
11.某大型购物中心为方便顾客地铁换乘,准备在底层至B1层之间安装电梯,截面图如图所示,底层与B1层平行,层高AD为9米,A、B间的距离为6米,∠ACD=20°.
(1)请问身高1.9米的人在竖直站立的情况下搭乘电梯,在B处会不会碰到头?请说明理由.
(2)若采取中段平台设计(如图虚线所示).已知平台EF∥DC,且AE段和FC段的坡度i=1:2,求平台EF的长度.
【参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36】
【分析】(1)先过点B作GB⊥AB,交AC于点G,根据∠ACD=20°,AB∥CD,得出∠BAG=20°,再根据正切定理求出BG的长,然后与人的身高进行比较,即可得出答案;
(2)根据AD的长求出CD,再过点F作FM⊥CD,垂足为点M,过点E作EN⊥AD,垂足为点N,设FM=x,则AN=9﹣x,根据AE段和FC段的坡度i=1:2,求出CM和NE的长,最后根据EF=CD﹣(CM﹣NE),即可求出答案.
【解答】解:(1)过点B作GB⊥AB,交AC于点G,
∵∠ACD=20°,AB∥CD,
∴∠BAG=20°,
∴BG=tan20°×6=0.36×6=2.16>1.9
∴不会碰到头部;
(2)∵AD=9,
∴CD==25,
过点F作FM⊥CD,垂足为点M,过点E作EN⊥AD,垂足为点N,
设FM=x,则AN=9﹣x,
∵AE段和FC段的坡度i=1:2,
∴CM=2x,NE=2(9﹣x)=18﹣2x,
∴CM+NE=2x+18﹣2x=18,
∴EF=CD﹣(CM﹣NE)≈25﹣18=7(米).
【点评】此题考查了解直角三角形的应用,用到的知识点是坡度角,关键是根据题意做出辅助线,构造直角三角形.
12.(2014•泰兴市二模)某工厂大楼后面紧邻着一个土坡,坡上面是一块平地,如图所示,BC∥AD,斜坡AB长22m,坡角∠BAD=60°,为了防止山体滑坡,保障安全,工厂决定对该土坡进行改造.经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡.
(1)求改造前坡顶与地面的距离BE的长;
(2)为确保安全,工厂计划改造时保持坡脚A不动,坡顶B沿BC削进到F点处,问BF至少是多少米?
【分析】(1)已知AB=22,∠BAD=60°利用sin60°可求出BE=AB•sin60°=11;
(2)作FG⊥AD,G为垂足,连接FA,则FG=BE利用tan45°求出AG的长11m,利用cos60°求出AE长,让AG减AE即可.
【解答】解:(1)作BE⊥AD,E为垂足,则BE=AB•sin60°=22sin60°=(m).
(2)作FG⊥AD,G为垂足,连结FA,
则FG=BE.
∵AG==(m),
AE=AB•cos60°=22cos60°=11(m),
∴BF=AG﹣AE=(m),即BF至少是()m.
【点评】本题考查了解直角三角形的应用,主要考查分析问题,综合利用解直角三角形的知识解决实际问题的能力.
13.(2014•市北区二模)如图,在一个坡角为40°的斜坡上有一棵树BC,树高4米.当太阳光AC与水平线成70°角时,该树在斜坡上的树影恰好为线段AB,求树影AB的长.(结果保留一位小数)
(参考数据:sin20°=0.34,tan20°=0.36,sin30°=0.50,tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,tan70°=2.75)
【分析】本题可通过构造直角三角形来解答,过B点作BD⊥AC,D为垂足,在直角三角形BCD中,已知BC的长,可求∠BCD的度数,那么可求出BD的长,在直角三角形ABD中,可求∠DAB=70°﹣40°=30°,前面又得到了BD的长,那么就可求出AB的长.
【解答】解:过B点作BD⊥AC,D为垂足,
在直角三角形BCD中,∠BCD=180°﹣70°﹣90°=20°,
BD=BC•sin20°=4×0.34=1.36米,
在直角三角形ABD中,∠DAB=70°﹣40°=30°,
AB=BD÷sin30°=1.36÷≈2.7米.
答:树影AB的长约为2.7米.
【点评】本题是将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中,使问题解决.
14.(2014•日照一模)如图,在夕阳西下的傍晚,某人看见高压电线的铁塔在阳光的照射下,铁塔的影子的一部分落在小山的斜坡上,为了测得铁塔的高度,他测得铁塔底部B到小山坡脚D的距离为2米,铁塔在小山斜坡上的影长DC为3.4米,斜坡的坡度i=1:1.875,同时他测得自己的影长NH﹦336cm,而他的身长MN为168cm,求铁塔的高度.
【分析】作AC的延长线交BD的延长线于E,作CF⊥DE,垂足为F.利用勾股定理和相似三角形的性质求出DF,FE,从而得到BE的长,再用相似三角形的性质求出AB即可.
【解答】解:作AC的延长线交BD的延长线于E,作CF⊥DE,垂足为F.
在Rt△CFD中,
i=1:1.875,
即CF:DF=1:1.875=8:15;
设CF=8x米,则DF=15x米,
由勾股定理可得,
(8x)2+(15x)2=CD2,
∴CD=17x=3.4,
∴x=0.2,
∴DF=15×0.2=3米,CF=8×0.2=1.6米.
∵FE:CF=NH:NM,
∴FE:1.6=336:168,
∴FE=3.2,
∴BE=BD+DF+FE=2+3+3.2=8.2米.
∴AB:BE=MN:NH,
∴AB:8.2=168:336,
∴AB=4.1米.
答:铁塔高度为4.1米.
【点评】本题考查了坡度与坡角与相似三角形的应用,构造直角三角形是解题的关键.
15.(2009•遵义)如图,山顶建有一座铁塔,塔高CD=20m,某人在点A处,测得塔底C的仰角为45°,塔顶D的仰角为60°,求山高BC(精确到1m,参考数据:≈1.41,≈1.73)
【分析】易得BC=AB,那么利用60°的正切值即可求得山高BC.
【解答】解:由题意可知:BD⊥AB于B,∠CAB=45°,∠DAB=60°,CD=20m.
设CB为x.
在△CAB中,∵∠CBA=90°,∠CAB=45°,
∴CB=BA=x.
在Rt△BDA中,∠DBA=90°,∠DAB=60°,
∴tanDAB=,
∴AB=.
∵CD=20,BD=CB+CD,
∴x=.
解得:x≈27.
答:山高BC约为27米.
【点评】两个直角三角形共边,应设这边为未知数,利用相应的三角函数值求解.
16.(2000•杭州)如图,河对岸有一高层建筑物AB,为测其高,在C处由点D用测量仪测得顶端A的仰角为30°,向高层建筑物前进50米,到达E处,由点F测得顶点A的仰角为45°,已知测量仪高CD=EF=1.2米,求高层建筑物AB的高.(结果精确到0.1米,,)
【分析】首先分析图形,根据题意构造直角三角形;本题涉与到两个直角三角形Rt△ADG、Rt△AFG,应利用其公共边AG,DF=DG﹣FG构造方程关系式,进而可解即可求出答案.
【解答】解:延长DF与AB交于G,设AG=x,
在Rt△ADG中,有AG=DG×tan30°=DG.
∴DG=x.
在Rt△AFG中,有FG=AG÷tan45°=x,
∵DF=DG﹣FG=50米,
∴x=25(+1)≈68.3米.
∴AB=AG+GB=69.5米.
答:AB的高约为69.5米.
【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.
17.(2015•甘南州)如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.
【分析】在图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.
【解答】解:由已知,得∠ECA=30°,∠FCB=60°,CD=90,
EF∥AB,CD⊥AB于点D.
∴∠A=∠ECA=30°,∠B=∠FCB=60°.
在Rt△ACD中,∠CDA=90°,tanA=,
∴AD==90×=90.
在Rt△BCD中,∠CDB=90°,tanB=,
∴DB==30.
∴AB=AD+BD=90+30=120.
答:建筑物A、B间的距离为120米.
【点评】解决本题的关键是利用CD为直角△ABC斜边上的高,将三角形分成两个三角形,然后求解.分别在两三角形中求出AD与BD的长.
18.(2013•香洲区校级一模)如图所示,当一热气球在点A处时,其探测器显示,从热气球看高楼顶部点B的仰角为45°,看高楼底部点C的俯角为60°,这栋楼高120米,那么热气球与高楼的水平距离为多少米?(结果精确到0.1米,参考数据:)
【分析】过A作AD⊥BC于点D,设BD=x,则CD=120﹣x,在Rt△ABD和Rt△ACD中分别表示出AD,则可解出x的值,继而得出答案.
【解答】解:
过A作AD⊥BC于点D,设BD=x,则CD=120﹣x,
在Rt△ABD中,∠BAD=45°,BD=x,
则AD=BD=x,
在Rt△ACD中,∠CAD=60°,CD=120﹣x,
则AD=CDcot∠CAD=(120﹣x)×,
则(120﹣x)×=x,
解得:x≈43.9,即热气球与高楼的水平距离为距离为43.9米.
答:热气球与高楼的水平距离为距离约为43.9米.
【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意掌握仰角、俯角的定义,难度一般.
19.(2012•锦州)如图,大楼AB高16米,远处有一塔CD,某人在楼底B处测得塔顶的仰角为38.5°,爬到楼顶A处测得塔顶的仰角为22°,求塔高CD与大楼与塔之间的距离BD的长.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80 )
【分析】过点A作AE⊥CD于点E,由题意可知:∠CAE=22°,∠CBD=38.5°,ED=AB=16米,设大楼与塔之间的距离BD的长为x米,则AE=BD=x,分别在Rt△BCD中和Rt△ACE中,用x表示出CD和CE=AE,利用CD﹣CE=DE得到有关x的方程求得x的值即可.
【解答】解:过点A作AE⊥CD于点E,由题意可知:∠CAE=22°,∠CBD=38.5°,ED=AB=16米
设大楼与塔之间的距离BD的长为x米,则AE=BD=x(不设未知数x也可以)
∵在Rt△BCD中,tan∠CBD=
∴CD=BD tan 38.5°≈0.8x
∵在Rt△ACE中,tan∠CAE=
∴CE=AE tan 22°≈0.4x
∵CD﹣CE=DE
∴0.8x﹣0.4x=16
∴x=40
即BD=40(米)
CD=0.8×40=32(米)
答:塔高CD是32米,大楼与塔之间的距离BD的长为40米.
【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,解答此题的关键是作出辅助线,构造出直角三角形,利用直角三角形的性质进行解答.
20.(2012•花山区校级模拟)如图,我校九年级某班数学课外活动小组利用周末开展课外实践活动,他们要在佳山公路上测量“佳山”高AB.于是他们采用了下面的方法:在佳山公路上选择了两个观察点C、D(C、D、B在一条直线上),从C处测得山顶A的仰角为30°,在D处测得山顶A的仰角为45°,已知测角仪的高CE与DF的高为1.5m,量得CD=450m.请你帮助他们计算出佳山高AB.(精确到1m,,)
【分析】连接EF并延长交AB于H,则可得到△AEH、△AFH均为直角三角形,在Rt△AFH中,根据∠AFH=45°得到AH=FH,最后设AH=FH=x (m),则EH=450+x 利用在Rt△AEH中,利用30°的正切值列出有关x的方程即可求解.
【解答】解:连接EF并延长交AB于H,
则△AEH、△AFH均为直角三角形,
在Rt△AFH中,∵∠AFH=4
展开阅读全文