资源描述
高中数学必修五 第一章 解三角形知识点归纳
1、三角形三角关系:A+B+C=180°;C=180°—(A+B);
2、三角形三边关系:a+b>c; a-b<c
3、三角形中的基本关系:
4、正弦定理:在中,、、分别为角、、的对边,为的外接圆的半径,则有.
5、正弦定理的变形公式:
①化角为边:,,;
②化边为角:,,;
③;④.
6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.
②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))
7、余弦定理:在中,有等,变形: 等,
8、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。②已知三边求角)
9、三角形面积公式:.=2R2sinAsinBsinC===
10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设、、是的角、、的对边,则:
①若,则;②若,则;③若,则.
11、三角形的四心:
垂心——三角形的三边上的高相交于一点
重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1)
外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等)
内心——三角形三内角的平分线相交于一点(内心到三边距离相等)
12同角的三角函数之间的关系
(1)平方关系:sin²α+cos²α=1 (2)倒数关系:tanα·cotα=1 (3)商的关系:
特殊角的三角函数值
三角
函数值
0
1
1
0
0
1
不存在
三角函数诱导公式:“ ()”记忆口诀: “奇变偶不变,符号看象限”,是指(),k∈Z的三角函数值,当k为奇数时,正弦变余弦,余弦变正弦(正切,余切;正割、余割也同样);
当k为偶数时,函数名不变。然后符号与 ‘将α看成锐角时原三角函数值的正负号’一致。
三角函数的图像与性质:
定义域
R
R
值域
R
周期性
奇偶性
奇函数
偶函数
奇函数
单调性
上为增函数;上为减函数()
;上为增函数
上为减函数
()
上为增函数()
有关函数
最大值是,最小值是,周期是,频率是,相位是,初相是;
其图象的对称轴是直线,凡是该图象与直线的交点都是该图象的对称中心。
函数y=sin(ωx+)的图象与函数y=sinx的图象的关系:
由y=sinx的图象变换出y=sin(ωx+)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
途径一:先平移变换再周期变换(伸缩变换)
先将y=sinx的图象向左(>0)或向右(<0=平移||个单位,再将图象上各点的横坐标变为原来的倍(ω>0),便得y=sin(ωx+)的图象。(先相位变换,再周期变换)
途径二:先周期变换(伸缩变换)再平移变换。
先将y=sinx的图象上各点的横坐标变为原来的倍(ω>0),再沿x轴向左(>0)或向右(<0=平移个单位,便得y=sin(ωx+)的图象。(先周期变换,再相位变换)
对称轴与对称中心:
的对称轴为,对称中心为;
的对称轴为,对称中心为;
y=tan x 图像的对称中心是(,0),无对称轴。
★诱导公式★(以下k∈Z)
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα
公式三:任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα
公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα
cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα
tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
同角三角函数基本关系
同角三角函数的基本关系式
商的关系:sinα/cosα=tanα
平方关系:sin2α+cos2α=1
两角和差公式 两角和与差的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
二倍角公式 二倍角的正弦、余弦和正切公式(升幂缩角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/[1-tan^2(α)]
半角公式半角的正弦、余弦和正切公式(降幂扩角公式)
sin2(α/2)=(1-cosα)/2 cos2(α/2)=(1+cosα)/2
tan2(α/2)=(1-cosα)/(1+cosα)
另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)
万能公式
万能公式
sinα=2tan(α/2)/[1+tan2(α/2)]
cosα=[1-tan2(α/2)]/[1+tan2(α/2)]
tanα=2tan(α/2)/[1-tan2(α/2)]
三倍角公式 三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
tan3α=(3tanα-tan3α)/(1-3tan2α)
和差化积公式 三角函数的和差化积公式
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
积化和差公式 三角函数的积化和差公式
sinα ·cosβ=[sin(α+β)+sin(α-β)]/2
cosα ·sinβ=[sin(α+β)-sin(α-β)]/2
cosα ·cosβ=[cos(α+β)+cos(α-β)]/2
sinα ·sinβ=—[cos(α+β)-cos(α-β)]/2
展开阅读全文