资源描述
导数和其应用 知识点总结
1、函数从到的平均变化率:
2、导数定义:在点处的导数记作;.
3、函数在点处的导数的几何意义是曲线在点处的切线的斜率.
4、常见函数的导数公式:
5、导数运算法则:
6、在某个区间内,若,则函数在这个区间内单调递增;
若,则函数在这个区间内单调递减.
7、求解函数单调区间的步骤:
(1)确定函数的定义域; (2)求导数;
(3)解不等式,解集在定义域内的部分为增区间;
(4)解不等式,解集在定义域内的部分为减区间.
8、求函数的极值的方法是:解方程.当时:
如果在附近的左侧,右侧,那么是极大值;
如果在附近的左侧,右侧,那么是极小值.
9、求解函数极值的一般步骤:
(1)确定函数的定义域 (2)求函数的导数f’(x)
(3)求方程f’(x)=0的根
(4)用方程f’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格
(5)由f’(x)在方程f’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况
10、求函数在上的最大值及最小值的步骤是:
求函数在内的极值;
将函数的各极值及端点处的函数值,比较,其中最大的一个是最大值,最小的一个是最小值.
第 1 页
展开阅读全文