收藏 分销(赏)

初中数学中考八大题型典中典专题复习试题阅读理解问题.doc

上传人:快乐****生活 文档编号:10455075 上传时间:2025-05-28 格式:DOC 页数:11 大小:287.51KB 下载积分:8 金币
下载 相关 举报
初中数学中考八大题型典中典专题复习试题阅读理解问题.doc_第1页
第1页 / 共11页
初中数学中考八大题型典中典专题复习试题阅读理解问题.doc_第2页
第2页 / 共11页


点击查看更多>>
资源描述
专题复习(五)——阅读理解问题 类型1:新定义运算型 定义运算“*”,规定x*y=ax2+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=_________ 【变式练习】 定义运算:a⊗b=a(1﹣b).下面给出了关于这种运算的几种结论:①2⊗(﹣2)=6,②a⊗b=b⊗a,③若a+b=0,则(a⊗a)+(b⊗b)=2ab,④若a⊗b=0,则a=0或b=1,其中结论正确的序号是(  )   A. ①④ B. ①③ C. ②③④ D. ①②④ 类型2:学习应用型 我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC的中线, AF⊥BE , 垂足为P.像△ABC这样的三角形均为“中垂三角形”.设,,. 特例探索 (1)如图1,当∠=45°,时,= , ; 如图2,当∠=30°,时, = , ; 归纳证明 (2)请你观察(1)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式; 拓展应用 (3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG, AD= ,AB=3. 求AF的长. 【变式练习】 如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是(写出所有正确说法的序号) ①方程x2﹣x﹣2=0是倍根方程. ②若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0; ③若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+3x+q=0的倍根方程; ④若方程ax2+bx+c=0是倍根方程,且相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,则方程ax2+bx+c=0的一个根为. 类型3:新概念阅读型 对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程的解为( ). (A) (B)  (C) (D) 【变式练习】 类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”. (1)概念理解 如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件. (2)问题探究 ①小红猜想:对角线互相平分的“等邻边四边形”是菱形.她的猜想正确吗?请说明理由。 ②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿 ∠ABC的平分线BB'方向平移得到△A'B'C',连结AA',BC'.小红要是平移后的四边形ABC'A'是“等邻边四边形”,应平移多少距离(即线段BB'的长)? (3)应用拓展 如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD==90°,AC,BD为对角线,AC=AB.试探究BC,CD,BD的数量关系. 类型4:纠错补全型 阅读理解 材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质: 梯形的中位线平行于两底和,并且等于两底和的一半. 如图(1):在梯形ABCD中:AD∥BC ∵E、F是AB、CD的中点 ∴EF∥AD∥BC EF=(AD+BC) 材料二:经过三角形一边的中点与另一边平行的直线必平分第三边 如图(2):在△ABC中: ∵E是AB的中点,EF∥BC ∴F是AC的中点 请你运用所学知识,结合上述材料,解答下列问题. 如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30° (1)求证:EF=AC; (2)若OD=3,OC=5,求MN的长. 【变式练习】 ((一)新知学习: 圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上). (二)问题解决: 已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M. (1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长; (2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值; (3)若直径AB与CD相交成120°角. ①当点P运动到的中点P1时(如图二),求MN的长; ②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值. (4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值. 跟踪检测: 1.定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是(  ) A.[x]=x(x为整数) B.0≤x﹣[x]<1 C.[x+y]≤[x]+[y]D.[n+x]=n+[x](n为整数) 2.阅读下列材料,并用相关的思想方法解决问题. 计算:(1﹣﹣﹣)×(+++)﹣(1﹣﹣﹣-)×(++). 令++=t,则 原式=(1﹣t)(t+)﹣(1﹣t﹣)t =t+﹣t2﹣t﹣t+t2 = 问题: (1)计算 (1﹣﹣﹣…﹣)×(+++…++)﹣(1﹣﹣﹣-…﹣﹣)×(++…+); (2)解方程(x2+5x+1)(x2+5x+7)=7. 3.自学下面材料后,解答问题。 分母中含有未知数的不等式叫分式不等式。如:等 。那么如何求出它们的解集呢? 根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负。其字母表达式为: (1)若a>0 ,b>0 ,则>0;若a<0 ,b<0,则>0; (2)若a>0 ,b<0 ,则<0 ;若a<0,b>0 ,则<0。 反之:(1)若>0则 (2)若<0 ,则__________或_____________. 根据上述规律,求不等式 的解集。 4.阅读资料: 如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为AB=. 我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2. 问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为. 综合应用: 如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB. ①证明AB是⊙P的切点; ②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由. 5.如图1,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,如果∠APB绕点P旋转时始终满足,我们就把∠APB叫做∠MON的智慧角. (1)如图2,已知∠MON=90°,点P为∠MON的平分线上一点,以点P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°. 求证:∠APB是∠MON的智慧角; (2)如图1,已知∠MON=(0°<<90°),OP=2,若∠APB是∠MON的智慧角,连结AB,用含的式子分别表示∠APB的度数和△AOB的面积; (3)如图3,C是函数图象上的一个动点,过点C的直线CD分别交轴和轴于点A,B两点,且满足BC=2CA,请求出∠AOB的智慧角∠APB的顶点P的坐标. 6.阅读材料:用配方法求最值. 已知x,y为非负实数, ∵x+y﹣2≥0 ∴x+y≥2,当且仅当“x=y”时,等号成立. 示例:当x>0时,求y=x++4的最小值. 解:+4=6,当x=,即x=1时,y的最小值为6. (1)尝试:当x>0时,求y=的最小值. (2)问题解决:随着人们生活水平的快速提高,小轿车已成为越来越多家庭的交通工具,假设某种小轿车的购车费用为10万元,每年应缴保险费等各类费用共计0.4万元,n年的保养、维护费用总和为万元.问这种小轿车使用多少年报废最合算(即:使用多少年的年平均费用最少,年平均费用=)?最少年平均费用为多少万元? 7.读材料:如图1,在△AOB中,∠O=90°,OA=OB,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF=OA.(此结论不必证明,可直接应用) (1)【理解与应用】 如图2,正方形ABCD的边长为2,对角线AC,BD相交于点O,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF的值为. (2)【类比与推理】 如图3,矩形ABCD的对角线AC,BD相交于点O,AB=4,AD=3,点P在AB边上,PE∥OB交AC于点E,PF∥OA交BD于点F,求PE+PF的值; (3)【拓展与延伸】 如图4,⊙O的半径为4,A,B,C,D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF是否为定值?若是,请求出这个定值;若不是,请说明理由.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服