收藏 分销(赏)

2019数学高考试题分类汇编-立体几何.doc

上传人:a199****6536 文档编号:10451889 上传时间:2025-05-28 格式:DOC 页数:4 大小:438.55KB
下载 相关 举报
2019数学高考试题分类汇编-立体几何.doc_第1页
第1页 / 共4页
2019数学高考试题分类汇编-立体几何.doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述
2019年数学高考试题汇编—立体几何 1、全国I理12.已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( ) A. B. C. D. 2、全国III理8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则( ) A.BM=EN,且直线BM,EN 是相交直线B.BM≠EN,且直线BM,EN 是相交直线 C.BM=EN,且直线BM,EN 是异面直线D.BM≠EN,且直线BM,EN 是异面直线 3、浙江4.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是 A.158 B.162 C.182 D.32 4、浙江8.设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点),记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P-AC-B的平面角为γ,则 A.β<γ,α<γ B.β<α,β<γ C.β<α,γ<α D.α<β,γ<β 5、北京理(11)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________. 6、北京理(12)已知l,m是平面外的两条不同直线.给出下列三个论断:①l⊥m;②m∥;③l⊥. 以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 7、江苏9.如图,长方体的体积是120,E为的中点,则三棱锥E-BCD的体积是 . 8、全国I文16.已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB 两边AC,BC的距离均为,那么P到平面ABC的距离为______ _____. 9、全国II文理16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为 长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1). 半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美. 图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方 体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.) 10、全国III理16.学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体挖去四棱锥O—EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,,3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗, 制作该模型所需原料的质量为___________g. 11、浙江17.已知正方形的边长为1,当每个取遍时,的最小值是________,最大值是_______. 12、北京理(16)(本小题14分)如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且.(Ⅰ)求证:CD⊥平面PAD;(Ⅱ)求二面角F–AE–P的余弦值;(Ⅲ)设点G在PB上,且.判断直线AG是否在平面AEF内,说明理由. 13、江苏16.(本小题满分14分)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC. 求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E. 14、全国I理18.(12分)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.文(2)求点C到平面C1DE的距离. 15、全国II理(一)必考题:共60分。 17.(12分)如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.文(2)若AE=A1E,AB=3,求四棱锥的体积. 16、全国III理19.(12分)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2. (1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小. 文(2)求图2中的四边形ACGD的面积. 17、浙江19.(本小题满分15分)如图,已知三棱柱,平面平面,,分别是AC,A1B1的中点.(1)证明:; (2)求直线EF与平面A1BC所成角的余弦值. 18、全国I理2018 某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为 A. B. C.3 D.2 19、全国I理2018已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A. B. C. D. 20、全国I理2018.(12分)如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面; (2)求与平面所成角的正弦值. 20、全国I文2018.(12分)如图,在平行四边形中,,,以为折痕将△折起,使点到达点的位置,且.(1)证明:平面平面; (2)为线段上一点,为线段上一点,且,求三棱锥的体积.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服