资源描述
高考圆锥曲线经典真题
知识整合:
直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能.
1.(江西卷15)过抛物线的焦点作倾角为的直线,与抛物线分别交于、两点(在轴左侧),则 .
2 (2008年安徽卷)若过点A(4,0)的直线与曲线有公共点,则直线的斜率的取值范围为 ( )
A. B. C. D.
3(2008年海南---宁夏卷)设双曲线的右顶点为A,右焦点为F,过点F平行双曲线的一条渐近线的直线与双曲线交于点B,则三角形AFB的面积为___________.
热点考点探究:
考点一:直线与曲线交点问题
例1.已知双曲线C:2x2-y2=2与点P(1,2)
(1)求过P(1,2)点的直线l的斜率取值范围,使l与C分别有一个交点,两个交点,没有交点.
解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点.当l的斜率存在时,设直线l的方程为y-2=k(x-1),代入C的方程,并整理得
(2-k2)x2+2(k2-2k)x-k2+4k-6=0 (*)
(ⅰ)当2-k2=0,即k=±时,方程(*)有一个根,l与C有一个交点
(ⅱ)当2-k2≠0,即k≠±时
Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k-6)=16(3-2k)
①当Δ=0,即3-2k=0,k=时,方程(*)有一个实根,l与C有一个交点.
②当Δ>0,即k<,又k≠±,故当k<-或-<k<或<k<时,方程(*)有两不等实根,l与C有两个交点.
③当Δ<0,即k>时,方程(*)无解,l与C无交点.
综上知:当k=±,或k=,或k不存在时,l与C只有一个交点;
当<k<,或-<k<,或k<-时,l与C有两个交点;
当k>时,l与C没有交点.
(2)假设以Q为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2)
又∵x1+x2=2,y1+y2=2
∴2(x1-x2)=y1-y1
即kAB==2
但渐近线斜率为±,结合图形知直线AB与C无交点,所以假设不正确,即以Q为中点的弦不存在.
(2)若Q(1,1),试判断以Q为中点的弦是否存在.
考点二:圆锥曲线中的最值问题
对于圆锥曲线问题上一些动点,在变化过程中会引入一些相互联系、相互制约的变量,从而使变量与其中的参变量之间构成函数关系,此时,用函数思想与函数方法处理起来十分方便。
例2 直线:和双曲线的左支交于A、B两点,直线过P()和AB线段的中点M,求在轴上的截距的取值范围。
解:由消去得,由题意,有:
设M(),则
由P()、M()、Q()三点共线,可求得
设,则在上为减函数。
所以,且
所以 所以或
考点三:弦长问题
涉及弦长问题,应熟练地利用韦达定理设而不求计算弦长,涉及垂直关系往往也是利用韦达定理,设而不求简化运算.
例3.如图所示,抛物线y2=4x的顶点为O,点A的坐标为(5,0),倾斜角为的直线l与线段OA相交(不经过点O或点A)且交抛物线于M、N两点,求△AMN面积最大时直线l的方程,并求△AMN的最大面积.
解:由题意,可设l的方程为y=x+m,-5<m<0.
由方程组,消去y,得x2+(2m-4)x+m2=0 ①
∵直线l与抛物线有两个不同交点M、N,
∴方程①的判别式Δ=(2m-4)2-4m2=16(1-m)>0,
解得m<1,又-5<m<0,∴m的范围为(-5,0)
设M(x1,y1),N(x2,y2)则x1+x2=4-2m,x1·x2=m2,
∴|MN|=4.
点A到直线l的距离为d=.
∴S△=2(5+m),从而S△2=4(1-m)(5+m)2
=2(2-2m)·(5+m)(5+m)≤2()3=128.
∴S△≤8,当且仅当2-2m=5+m,即m=-1时取等号.
故直线l的方程为y=x-1,△AMN的最大面积为8.
考点4:圆锥曲线关于直线对称问题
例4. 已知椭圆的中心在圆点,一个焦点是F(2,0),且两条准线间的距离为,
(I)求椭圆的方程;
(II)若存在过点A(1,0)的直线,使点F关于直线的对称点在椭圆上,求的取值范围.
【解析】(I)设椭圆的方程为
由条件知,
故椭圆的方程是
(II)依题意,直线的斜率存在且不为0,记为,则直线的方程是,设点F(2,0)关于直线的对称点为,则
因为在椭圆上,所以
即
故,则
因为
于是,当且仅当(*)
上述方程存在正实根,即直线存在.
解(*)得
即的取值范围是
规律总结
1. 判定直线与圆锥曲线位置关系时,应将直线方程与圆锥曲线C的方程联立,消去(也可消去)得一个关于变量的一元方程
①当时,若有,则与C相交;若,则与C相切;若,则与C相离.
②当时,得到一个一元一次方程,若方程有解,则有直线与C相交,此时只有一个公共点;若C为双曲线,则平行于双曲线的渐近线;若C为抛物线,则平行于抛物线的轴.所以只有当直线与双曲线、抛物线只有一个公共点时,直线与双曲线、抛物线可能相切,也可能相交.
2. “设而不求”的方法
若直线与圆锥曲线C有两个交点A和B时,一般地,首先设出交点A()、B(),它们是过渡性参数,不须求出,有时运用韦达定理解决问题,有时利用点在曲线上代入曲线方程整体运算求解.
3. 韦达定理与弦长公式
斜率为的直线被圆锥曲线截得弦AB,若A(),B()则 ,然后再结合韦达定理可求出弦长等.
专题能力训练:
一、选择题
1.斜率为1的直线l与椭圆+y2=1相交于A、B两点,则|AB|的最大值为( )
A.2 B. C. D.
2.抛物线y=ax2与直线y=kx+b(k≠0)交于A、B两点,且此两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则恒有( )
A.x3=x1+x2 B.x1x2=x1x3+x2x3
C.x1+x2+x3=0 D.x1x2+x2x3+x3x1=0
1.解析:弦长|AB|=≤.
答案:C
2.解析:解方程组,得ax2-kx-b=0,可知x1+x2=,x1x2=-,x3=-,代入验证即可.
答案:B
3.斜率为2的直线过双曲线的右焦点,且与双曲线的左、右两支分别相交,则双曲线的离心率的取值范围是 ( D )
A. B. C. D.
4.过点A(4,0)的直线与抛物线交于另外两点B、C,O是坐标原点,则三角形BOC是 ( C )
A.锐角三角形 B.钝角三角形 C. 直角三角形 D.形状不确定
二、填空题
5.已知两点M(1,)、N(-4,-),给出下列曲线方程:①4x+2y-1=0,②x2+y2=3,③+y2=1,④-y2=1,在曲线上存在点P满足|MP|=|NP|的所有曲线方程是_________.
.解析:点P在线段MN的垂直平分线上,判断MN的垂直平分线于所给曲线是否存在交点.
答案:②③④
6.正方形ABCD的边AB在直线y=x+4上,C、D两点在抛物线y2=x上,则正方形ABCD的面积为_________.
7.在抛物线y2=16x内,通过点(2,1)且在此点被平分的弦所在直线的方程是_________.
6解析:设C、D所在直线方程为y=x+b,代入y2=x,利用弦长公式可求出|CD|的长,利用|CD|的长等于两平行直线y=x+4与y=x+b间的距离,求出b的值,再代入求出|CD|的长.
答案:18或50
7.解析:设所求直线与y2=16x相交于点A、B,且A(x1,y1),B(x2,y2),代入抛物线方程得y12=16x1,y22=16x2,两式相减得,(y1+y2)(y1-y2)=16(x1-x2).
即kAB=8.
故所求直线方程为y=8x-15.
答案:8x-y-15=0
三、解答题
8.已知抛物线y2=2px(p>0),过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,且|AB|≤2p.
(1)求a的取值范围.
(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.
9.知中心在原点,顶点A1、A2在x轴上,离心率e=的双曲线过点P(6,6).
(1)求双曲线方程.
(2)动直线l经过△A1PA2的重心G,与双曲线交于不同的两点M、N,问:是否存在直线l,使G平分线段MN,证明你的结论.
10.已知双曲线C的两条渐近线都过原点,且都以点A(,0)为圆心,1为半径的圆相切,双曲线的一个顶点A1与A点关于直线y=x对称.
(1)求双曲线C的方程.
(2)设直线l过点A,斜率为k,当0<k<1时,双曲线C的上支上有且仅有一点B到直线l的距离为,试求k的值及此时B点的坐标.
11. 已知过双曲线方程
(1)过M(1,1)的直线交双曲线于A、B两点,若M为弦AB的中点,求直线AB的方程;
(2)是否存在直线,使为被双曲线所截得弦的中点,若存在,求出直线的方程;若不存在,请说明理由.
8解:(1)设直线l的方程为:y=x-a,代入抛物线方程得(x-a)2=2px,即x2-2(a+p)x+a2=0
∴|AB|=≤2p.∴4ap+2p2≤p2,即4ap≤-p2
又∵p>0,∴a≤-.
(2)设A(x1,y1)、B(x2,y2),AB的中点 C(x,y),
由(1)知,y1=x1-a,y2=x2-a,x1+x2=2a+2p,
则有x==p.
∴线段AB的垂直平分线的方程为y-p=-(x-a-p),从而N点坐标为(a+2p,0)
点N到AB的距离为
从而S△NAB=
当a有最大值-时,S有最大值为p2.
9.解:(1)如图,设双曲线方程为=1.由已知得,解得a2=9,b2=12.
所以所求双曲线方程为=1.
(2)P、A1、A2的坐标依次为(6,6)、(3,0)、(-3,0),
∴其重心G的坐标为(2,2)
假设存在直线l,使G(2,2)平分线段MN,设M(x1,y1),N(x2,y2).则有
,∴kl=
∴l的方程为y= (x-2)+2,
由,消去y,整理得x2-4x+28=0.
∵Δ=16-4×28<0,∴所求直线l不存在.
10.解:(1)设双曲线的渐近线为y=kx,由d==1,解得k=±1.
即渐近线为y=±x,又点A关于y=x对称点的坐标为(0,).
∴a==b,所求双曲线C的方程为x2-y2=2.
(2)设直线l:y=k(x-)(0<k<1,依题意B点在平行的直线l′上,且l与l′间的距离为.
设直线l′:y=kx+m,应有,化简得m2+2km=2. ②
把l′代入双曲线方程得(k2-1)x2+2mkx+m2-2=0,
由Δ=4m2k2-4(k2-1)(m2-2)=0.可得m2+2k2=2 ③
②、③两式相减得k=m,代入③得m2=,解设m=,k=,此时x=,y=.故B(2,).
11.解析(1)设,
则
则有…………………..①
………………………..②
①-②得
∵
∵双曲线的一条渐近线方程为,而,
与双曲线交于两点.
为所求.
(2)假设过N直线交双曲线于, 则有
,.
两式相减得
∵
∵双曲线的一条渐近线方程为,
直线与双曲线没有公共点.
以为弦中点的直线不存在.
【点评】”设而不求”是保证A、B两交点存在的情况下,所采用整体运算求直线方程的方法,但如果是假定直线与曲线存在两个交点A、B为前提下求出直线,则必须验证与圆锥曲线公共点的存在性.
第12页 共12页
展开阅读全文