资源描述
基本初等函数及图形
(1) 常值函数(也称常数函数) y =c(其中c 为常数)
(2) 幂函数 ,是常数;
1. 当u为正整数时,函数的定义域为区间,他们的图形都经过原点,并当u>1时在原点处与X轴相切。且u为奇数时,图形关于原点对称;u为偶数时图形关于Y轴对称;
2. 当u为负整数时。函数的定义域为除去x=0的所有实数。
3. 当u为正有理数m/n时,n为偶数时函数的定义域为(0, +),n为奇数时函数的定义域为(-+)。函数的图形均经过原点和(1 ,1).
如果m>n图形于x轴相切,如果m<n,图形于y轴相切,且m为偶数时,还跟y轴对称;m,n均为奇数时,跟原点对称
4. 当u为负有理数时,n为偶数时,函数的定义域为大于零的一切实数;n为奇数时,定义域为去除x=0以外的一切实数.
(3) 指数函数 (是常数且),;
1. 当a>1时函数为单调增,当a<1时函数为单调减.
2. 不论x为何值,y总是正的,图形在x轴上方.
3. 当x=0时,y=1,所以他的图形通过(0,1)点.
(4) 对数函数 (是常数且),;
1. 他的图形为于y轴的右方.并通过点(1,0)
2. 当a>1时在区间(0,1),y的值为负.图形位于x的下方,在区间(1, +),y值为正,图形位于x轴上方.在定义域是单调增函数.
a<1在实用中很少用到/
(5) 三角函数
正弦函数 ,,,
余弦函数 ,,,
正切函数 ,,,,
余切函数 ,,,;
(6)反三角函数
反正弦函数 , ,,
反余弦函数 ,,,
反正切函数 ,,,
反余切函数 ,,.
小结:
函数名称
函数的记号
函数的图形
函数的性质
指数函数
a):不论x为何值,y总为正数;
b):当x=0时,y=1.
对数函数
a):其图形总位于y轴右侧,并过(1,0)点
b):当a>1时,在区间(0,1)的值为负;在区间(1,+∞)的值为正;在定义域内单调增.
幂函数
(a为任意实数)
这里只画出部分函数图形的一部分。
令a=m/n
a):当m为偶数n为奇数时,y是偶函数;
b):当m,n都是奇数时,y是奇函数;
c):当m奇n偶时,y在(-∞,0)无意义.
三角函数
(正弦函数)
这里只写出了正弦函数
a):正弦函数是以2π为周期的周期函数
b):正弦函数是奇函数且
展开阅读全文