收藏 分销(赏)

高中数学专题:抛物线.doc

上传人:人****来 文档编号:10412798 上传时间:2025-05-27 格式:DOC 页数:5 大小:903.55KB 下载积分:6 金币
下载 相关 举报
高中数学专题:抛物线.doc_第1页
第1页 / 共5页
高中数学专题:抛物线.doc_第2页
第2页 / 共5页


点击查看更多>>
资源描述
抛物线专题复习 一、抛物线的知识点: 标准方程 图形 顶点 对称轴 焦点 准线 离心率 焦半径 焦点弦公式 轴 轴 轴 轴 通径:过焦点且垂直于对称轴的相交弦 通径: AB为抛物线的焦点弦,则 ,,= 考点1 抛物线的定义 [例1 ]已知点在抛物线上,则点到点的距离与点到抛物线焦点距离之和的最小值为 考点2 抛物线的标准方程 [例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点; (2)焦点在直线上 考点3 抛物线的几何性质 [例3 ]设为抛物线上的点,且为原点),则直线必过的定点坐标为_______ [例4 ]设是抛物线的焦点.(I)过点作抛物线的切线,求切线方程; (II)设为抛物线上异于原点的两点,且满足延长,分别交抛物线于点,求四边形面积的最小值. 二.基本题型 1.过抛物线的焦点作直线交抛物线于两点,如果,那么=( ) (A)10 (B)8 (C)6 (D)4 2.已知抛物线的焦点为,点,在抛物线上,且、、成等差数列, 则有 (  ) A. B. C. D. 3.已知为抛物线上一动点,为抛物线的焦点,定点,则的最小值为( ) (A)3 (B)4 (C)5 (D)6 4.过抛物线的焦点作直线交抛物线于、两点,则( ) (A) (B) (C) (D) 5.已知抛物线C:的焦点为准线为过抛物线C上的点A作准线l的垂线,垂足为M,若△AMF与△AOF(其中O为坐标原点)的面积之比为3:1,则点A的坐标为(  ) A.(2,2) B.(2,-2) C.(2,±) D.(2,±2) 6.过抛物线焦点F的直线与抛物线交于两点A、B,若A、B在抛物线准线上的射影为,则 ( ) A. B. C. D. 7.两个正数a、b的等差中项是,一个等比中项是,且则抛物线的焦点坐标为(  ) A. B. C. D. 8.抛物线准线为与轴相交于点过且倾斜角等于的直线与抛物线在轴上方的部分相交于点垂足为则四边形的面积等于( ) A. B. C. D. 9.已知抛物线C:,过点和点的直线与抛物线C没有公共点,则实数t的取值范围是(  ) A.B. C. D. 10.如果,,…,是抛物线上的点,它们的横坐标依次为,,…,,F是抛物线的焦点,若成等差数列且,则=( ). A.5 B.6 C. 7 D.9 11.设是坐标原点,是抛物线的焦点,是抛物线上的一点,与轴正向的夹角为,则为 . 12.若直线经过抛物线的焦点,则实数 13.若抛物线的焦点与双曲线的右焦点重合,则的值 14. (理)如图,过抛物线y2=2px(p>0)的焦点的直线l依次交抛物线及其准线于点A、B、C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程是________. (文)如图,过抛物线y2=2px(p>0)的焦点F作倾斜角为60°的直线l,交抛物线于A、B两点,且|FA|=3,则抛物线的方程是________. 15.抛物线的顶点在原点,开口向上,为焦点为准线与轴的交点为抛物线上一点,且,求此抛物线的方程. 16.在抛物线上求一点,使该点到直线的距离为最短,求该点的坐标. 17.设抛物线()的焦点为 经过点的直线交抛物线于两点.点在抛物线的准线上,且∥轴.证明直线经过原点. 18.已知直线与抛物线相交于、两点,若,(为坐标原点)且,求抛物线的方程. 19.椭圆上有一点在抛物线(p>0)的准线上,抛物线的焦点也是椭圆焦点. (1)求椭圆方程; (2)若点在抛物线上,过作准线的垂线,垂足为距离,求的最小值. 20.椭圆C1:<<的离心率抛物线C2:>的焦点在椭圆C1的顶点上. (1)求抛物线C2的方程; (2)若过的直线与抛物线C2交于E、F两点,又过E、F作抛物线C2的切线l1、l2,当l1⊥l2时,求直线的方程. 21.已知抛物线C:的焦点为过点的直线l与C相交于A、B两点,点A关于x轴的对称点为D. (1)证明:,点在直线上;(2)设求的内切圆的方程. 20.(文)[解析] (1)已知椭圆的长半轴长为a=2,半焦距c=, 由离心率e===得,b2=1. ∴椭圆的上顶点为(0,1),即抛物线的焦点为(0,1),∴p=2,抛物线的方程为x2=4y. (2)由题知直线l的斜率存在且不为零,则可设直线l的方程为y=k(x+1),E(x1,y1),F(x2,y2), ∵y=x2,∴y′=x, ∴切线l1,l2的斜率分别为x1,x2, 当l1⊥l2时,x1·x2=-1,即x1·x2=-4, 由得:x2-4kx-4k=0, 由Δ=(-4k)2-4×(-4k)>0,解得k<-1或k>0.又x1·x2=-4k=-4,得k=1. ∴直线l的方程为x-y+1=0. 21.[解析] 设A(x1,y1),B(x2,y2),D(x1,-y1),l的方程为x=my-1(m≠0) (1)将x=my-1(m≠0)代入y2=4x并整理得y2-4my+4=0,从而y1+y2=4m,y1y2=4① 直线BD的方程为y-y2=(x-x2),即y-y2= 令y=0,得x==1,所以点F(1,0)在直线BD上. (2)由(1)知,x1+x2=(my1-1)+(my2-1)=4m2-2,x1x2=(my1-1)(my2-1)=1 因为=(x1-1,y1),=(x2-1,y2),·=(x1-1,y1)·(x2-1,y2)=x1x2-(x1+x2)+1+4=8-4m2, 故8-4m2=,解得m=±, 直线l的方程为3x+4y+3=0,3x-4y+3=0. 从而y2-y1=±=±,故=± 因而直线BD的方程为3x+y-3=0,3x-y-3=0. 因为KF为∠BKD的角平分线,故可设圆心M(t,0),(-1<t<1),M(t,0)到直线l及BD的距离分别为,, 由=得t=或t=9(舍去),故圆M的半径为r==, 所以圆M的方程为2+y2=. 例4(I)设切点.由,知抛物线在点处的切线斜率为,故所求切线方程为. 即. 因为点在切线上.所以,,.所求切线方程为. (II)设,.由题意知,直线的斜率存在,由对称性,不妨设. 因直线过焦点,所以直线的方程为. 点的坐标满足方程组得,由根与系数的关系知 . 因为,所以的斜率为,从而的方程为. 同理可求得.. 当时,等号成立.所以,四边形面积的最小值为.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服