收藏 分销(赏)

高一数学函数的基本性质知识点及练习题(含答案).doc

上传人:人****来 文档编号:10351386 上传时间:2025-05-23 格式:DOC 页数:6 大小:128.01KB
下载 相关 举报
高一数学函数的基本性质知识点及练习题(含答案).doc_第1页
第1页 / 共6页
高一数学函数的基本性质知识点及练习题(含答案).doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述
函数的基本性质 1.奇偶性 (1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。 如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。 注意: 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: 首先确定函数的定义域,并判断其定义域是否关于原点对称; 确定f(-x)与f(x)的关系; 作出相应结论: 若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数; 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数。 (3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称; ②设,的定义域分别是,那么在它们的公共定义域上: 奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶 2.单调性 (1)定义:一般地,设函数y=f(x)的定义域为I, 如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2)(f(x1)>f(x2)),那么就说f(x)在区间D上是增函数(减函数); 注意: 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) (2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。 (3)设复合函数y= f[g(x)],其中u=g(x) , A是y= f[g(x)]定义域的某个区间,B是映射g : x→u=g(x) 的象集: ①若u=g(x) 在 A上是增(或减)函数,y= f(u)在B上也是增(或减)函数,则函数y= f[g(x)]在A上是增函数; ②若u=g(x)在A上是增(或减)函数,而y= f(u)在B上是减(或增)函数,则函数y= f[g(x)]在A上是减函数。 (4)判断函数单调性的方法步骤 利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤: 任取x1,x2∈D,且x1<x2; 作差f(x1)-f(x2); 变形(通常是因式分解和配方); 定号(即判断差f(x1)-f(x2)的正负); 下结论(即指出函数f(x)在给定的区间D上的单调性)。 (5)简单性质 ①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反; ③在公共定义域内: 增函数增函数是增函数;减函数减函数是减函数;增函数减函数是增函数;减函数增函数是减函数。 3.最值 (1)定义: 最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0) = M。那么,称M是函数y=f(x)的最大值。 最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0) = M。那么,称M是函数y=f(x)的最大值。 注意: 函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0) = M; 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M)。 (2)利用函数单调性的判断函数的最大(小)值的方法: 利用二次函数的性质(配方法)求函数的最大(小)值; 利用图象求函数的最大(小)值; 利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 4.周期性 (1)定义:如果存在一个非零常数T,使得对于函数定义域内的任意x,都有f(x+T)= f(x),则称f(x)为周期函数; (2)性质:①f(x+T)= f(x)常常写作若f(x)的周期中,存在一个最小的正数,则称它为f(x)的最小正周期;②若周期函数f(x)的周期为T,则f(ωx)(ω≠0)是周期函数,且周期为。 函数的基本性质 一、典型选择题 1.在区间上为增函数的是(   ) A.       B.   C.      D. (考点:基本初等函数单调性) 2.函数是单调函数时,的取值范围 (   ) A.        B.      C .       D. (考点:二次函数单调性) 3.如果偶函数在具有最大值,那么该函数在有 (   ) A.最大值  B.最小值 C .没有最大值  D. 没有最小值(考点:函数最值) 4.函数,是(   ) A.偶函数 B.奇函数C.不具有奇偶函数 D.与有关(考点:函数奇偶性) 5.函数在和都是增函数,若,且那么(   ) A.    B.   C.     D.无法确定 (考点:抽象函数单调性) 6.函数在区间是增函数,则的递增区间是  (   ) A.        B.       C.      D. (考点:复合函数单调性) 7.函数在实数集上是增函数,则(   ) A.    B.      C.      D. (考点:函数单调性) 8.定义在R上的偶函数,满足,且在区间上为递增,则(  ) A.       B.   C.       D. (考点:函数奇偶、单调性综合) 9.已知在实数集上是减函数,若,则下列正确的是(   ) A.     B. C.     D. (考点:抽象函数单调性) 二、典型填空题 1.函数在R上为奇函数,且,则当,   .(考点:利用函数奇偶性求解析式) 2.函数,单调递减区间为     ,最大值和最小值的情况为     .(考点:函数单调性,最值) 三、典型解答题 1.(12分)已知,求函数得单调递减区间. (考点:复合函数单调区间求法) 2.(12分)已知,,求. (考点:函数奇偶性,数学整体代换的思想) 一、BAABDBAAD 二、1.;   2.和,;  三、3. 解: 函数,, 故函数的单调递减区间为. 4.解: 已知中为奇函数,即=中,也即,,得,.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服