资源描述
八年级数学上册复习
第一章 勾股定理
1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
3.勾股定理逆定理:如果三角形的三边长,,满足,那么这个三角形是直角三角形。满足的三个正整数称为勾股数。
第二章 实数
1.平方根和算术平方根的概念及其性质:
(1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。
(2)性质:①当≥0时,≥0;当<0时,无意义;②=;③。
2.立方根的概念及其性质:
(1)概念:若,那么是的立方根,记作:;
(2)性质:①;②;③=
3.实数的概念及其分类:
(1)概念:实数是有理数和无理数的统称;
(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4.与实数有关的概念: 在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成 立。每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。因此,数轴正好可以被实数填满。
5.算术平方根的运算律: (≥0,≥0); (≥0,>0)。
第三章 图形的平移与旋转
1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。这点定点称为旋转中心,转动的角称为旋转角。旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。
3.作平移图与旋转图。
第四章 四边形性质的探索
特殊
菱形
矩形
特殊
正方形
多边形
三角形
等腰三角形、直角三角形
四边形
特殊
梯形
特殊
等腰梯形
边数多于4的多边形
特殊
正多边形
平行四边形
特殊
1.多边形的分类:
2.平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:
(1)平行四边形:两组对边分别平行的四边形叫做平行四边形。平行四边形的对边平行且相等;对角相等,邻角互补;对角线互相平分。两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
(2)菱形:一组邻边相等的平行四边形叫做菱形。菱形的四条边都相等;对角线互相垂直平分,每一条对角线平分一组对角。四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;一组邻边相等的平行四边形是菱形;对角线互相平分且垂直的四边形是菱形。菱形的面积等于两条对角线乘积的一半(面积计算,即S 菱形=L1*L2/2)。
(3)矩形:有一个内角是直角的平行四边形叫做矩形。矩形的对角线相等;四个角都是直角。对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形。直角三角形斜边上的中线等于斜边长的一半; 在直角三角形中30°所对的直角边是斜边的一半。
(4)正方形:一组邻边相等的矩形叫做正方形。正方形具有平行四边形、菱形、矩形的一切性质。
(5)等腰梯形同一底上的两个内角相等,对角线相等。同一底上的两个内角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形;对角互补的梯形是等腰梯形。
(6)三角形中位线:连接三角形相连两边重点的线段。性质:平行且等于第三边的一半
3.多边形的内角和公式:(n-2)*180°;多边形的外角和都等于。
4.中心对称图形:在平面内,一个图形绕某个点旋转,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。
第五章 位置的确定
1.直角坐标系及坐标的相关知识。
2.点的坐标间的关系:如果点A、B横坐标相同,则∥轴;如果点A、B纵坐标相同,则∥轴。
3.将图形的纵坐标保持不变,横坐标变为原来的倍,所得到的图形与原图形关于轴对称;将图形的横坐标保持不变,纵坐标变为原来的倍,所得到的图形与原图形关于轴对称;将图形的横、纵坐标都变为原来的倍,所得到的图形与原图形关于原点成中心对称。
第六章 一次函数
1.一次函数定义:若两个变量间的关系可以表示成(为常数,)的形式,则称是的一次函数。当时称是的正比例函数。正比例函数是特殊的一次函数。
2.作一次函数的图象:列表取点、描点、连线,标出对应的函数关系式。
3.正比例函数图象性质:经过;>0时,经过一、三象限;<0时,经过二、四象限。
4.一次函数图象性质:
(1)当>0时,随的增大而增大,图象呈上升趋势;当<0时,随的增大而减小,图象呈下降趋势。
(2)直线与轴的交点为,与轴的交点为 。
(3)在一次函数中:>0,>0时函数图象经过一、二、三象限;>0,<0时函数图象经过一、三、四象限;<0,>0时函数图象经过一、二、四象限;<0,<0时函数图象经过二、三、四象限。
(4)在两个一次函数中,当它们的值相等时,其图象平行;当它们的值不等时,其图象相交;当它们的值乘积为时,其图象垂直。
4.已经任意两点求一次函数的表达式、根据图象求一次函数表达式。
5.运用一次函数的图象解决实际问题。
第七章 二元一次方程组
1.二元一次方程及二元一次方程组的定义。
2.解方程组的基本思路是消元,消元的基本方法是:①代入消元法;②加减消元法;③图象法。
3.方程组解应用题的关键是找等量关系。
4.解应用题时,按设、列、解、答 四步进行。
5.每个二元一次方程都可以看成一次函数,求二元一次方程组的解,可看成求两个一次函数图象的交点。
第八章 数据的代表
1.算术平均数与加权平均数的区别与联系:算术平均数是加权平均数的一种特殊情况,(它特殊在各项的权相等),当实际问题中,各项的权不相等时,计算平均数时就要采用加权平均数,当各项的权相等时,计算平均数就要采用算术平均数。
2.中位数和众数:中位数指的是n个数据按大小顺序(从大到小或从小到大)排列,处在最中间位置的一个数据(或最中间两个数据的平均数)。众数指的是一组数据中出现次数最多的那个数据。
应知应会的知识点
因式分解
1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.
3.公因式的确定:系数的最大公约数·相同因式的最低次幂.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式: a2-b2=(a+ b)(a- b);
(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事项:
(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字;
(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;
(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;
(4)因式分解的最后结果要求每一个因式的首项符号为正;
(5)因式分解的最后结果要求加以整理;
(6)因式分解的最后结果要求相同因式写成乘方的形式.
6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.
7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q是完全平方式 Û ”.
分式
1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子 叫做分式.
2.有理式:整式与分式统称有理式;即 .
3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.
4.分式的基本性质与应用:
(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;
(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;
即
(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.
5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.
6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.
7.分式的乘除法法则: .
8.分式的乘方:.
9.负整指数计算法则:
(1)公式: a0=1(a≠0), a-n= (a≠0);
(2)正整指数的运算法则都可用于负整指数计算;
(3)公式:,;
(4)公式: (-1)-2=1, (-1)-3=-1.
10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.
11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂.
12.同分母与异分母的分式加减法法则: .
13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.
14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.
15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.
16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.
17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.
18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.
数的开方
1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.
2.平方根的性质:
(1)正数的平方根是一对相反数;
(2)0的平方根还是0;
(3)负数没有平方根.
3.平方根的表示方法:a的平方根表示为和.注意:可以看作是一个数,也可以认为是一个数开二次方的运算.
4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为.注意:0的算术平方根还是0.
5.三个重要非负数: a2≥0 ,|a|≥0 ,≥0 .注意:非负数之和为0,说明它们都是0.
6.两个重要公式:
(1) ; (a≥0)
(2) .
7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方数;(2)a的立方根表示为;即把a开三次方.
8.立方根的性质:
(1)正数的立方根是一个正数;
(2)0的立方根还是0;
(3)负数的立方根是一个负数.
9.立方根的特性:.
10.无理数:无限不循环小数叫做无理数.注意:p和开方开不尽的数是无理数.
11.实数:有理数和无理数统称实数.
12.实数的分类:(1)(2) .
13.数轴的性质:数轴上的点与实数一一对应.
14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆: .
三角形
几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)
1.三角形的角平分线定义:
三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图)
几何表达式举例:
(1) ∵AD平分∠BAC
∴∠BAD=∠CAD
(2) ∵∠BAD=∠CAD
∴AD是角平分线
2.三角形的中线定义:
在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)
几何表达式举例:
(1) ∵AD是三角形的中线
∴ BD = CD
(2) ∵ BD = CD
∴AD是三角形的中线
3.三角形的高线定义:
从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线.
(如图)
几何表达式举例:
(1) ∵AD是ΔABC的高
∴∠ADB=90°
(2) ∵∠ADB=90°
∴AD是ΔABC的高
※4.三角形的三边关系定理:
三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)
几何表达式举例:
(1) ∵AB+BC>AC
∴……………
(2) ∵ AB-BC<AC
∴……………
5.等腰三角形的定义:
有两条边相等的三角形叫做等腰三角形. (如图)
几何表达式举例:
(1) ∵ΔABC是等腰三角形
∴ AB = AC
(2) ∵AB = AC
∴ΔABC是等腰三角形
6.等边三角形的定义:
有三条边相等的三角形叫做等边三角形. (如图)
几何表达式举例:
(1)∵ΔABC是等边三角形
∴AB=BC=AC
(2) ∵AB=BC=AC
∴ΔABC是等边三角形
7.三角形的内角和定理及推论:
(1)三角形的内角和180°;(如图)
(2)直角三角形的两个锐角互余;(如图)
(3)三角形的一个外角等于和它不相邻的两个内角的和;(如图)
※(4)三角形的一个外角大于任何一个和它不相邻的内角.
(1) (2) (3)(4)
几何表达式举例:
(1) ∵∠A+∠B+∠C=180°
∴…………………
(2) ∵∠C=90°
∴∠A+∠B=90°
(3) ∵∠ACD=∠A+∠B
∴…………………
(4) ∵∠ACD >∠A
∴…………………
8.直角三角形的定义:
有一个角是直角的三角形叫直角三角形.(如图)
几何表达式举例:
(1) ∵∠C=90°
∴ΔABC是直角三角形
(2) ∵ΔABC是直角三角形
∴∠C=90°
9.等腰直角三角形的定义:
两条直角边相等的直角三角形叫等腰直角三角形.(如图)
几何表达式举例:
(1) ∵∠C=90° CA=CB
∴ΔABC是等腰直角三角形
(2) ∵ΔABC是等腰直角三角形
∴∠C=90° CA=CB
几何表达式举例:
(1) ∵ΔABC≌ΔEFG
∴ AB = EF ………
(2) ∵ΔABC≌ΔEFG
∴∠A=∠E ………
11.全等三角形的判定:
“SAS”“ASA”“AAS”“SSS”“HL”. (如图)
(1)(2)
(3)
几何表达式举例:
(1) ∵ AB = EF
∵ ∠B=∠F
又∵ BC = FG
∴ΔABC≌ΔEFG
(2) ………………
(3)在RtΔABC和RtΔEFG中
∵ AB=EF
又∵ AC = EG
∴RtΔABC≌RtΔEFG
12.角平分线的性质定理及逆定理:
(1)在角平分线上的点到角的两边距离相等;(如图)
(2)到角的两边距离相等的点在角平分线上.(如图)
几何表达式举例:
(1)∵OC平分∠AOB
又∵CD⊥OA CE⊥OB
∴ CD = CE
(2) ∵CD⊥OA CE⊥OB
又∵CD = CE
∴OC是角平分线
13.线段垂直平分线的定义:
垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图)
几何表达式举例:
(1) ∵EF垂直平分AB
∴EF⊥AB OA=OB
(2) ∵EF⊥AB OA=OB
∴EF是AB的垂直平分线
14.线段垂直平分线的性质定理及逆定理:
(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(如图)
(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图)
几何表达式举例:
(1) ∵MN是线段AB的垂直平分线
∴ PA = PB
(2) ∵PA = PB
∴点P在线段AB的垂直平分线上
15.等腰三角形的性质定理及推论:
(1)等腰三角形的两个底角相等;(即等边对等角)(如图)
(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)
(3)等边三角形的各角都相等,并且都是60°.(如图)
(1) (2) (3)
几何表达式举例:
(1) ∵AB = AC
∴∠B=∠C
(2) ∵AB = AC
又∵∠BAD=∠CAD
∴BD = CD
AD⊥BC
………………
(3) ∵ΔABC是等边三角形
∴∠A=∠B=∠C =60°
16.等腰三角形的判定定理及推论:
(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)
(2)三个角都相等的三角形是等边三角形;(如图)
(3)有一个角等于60°的等腰三角形是等边三角形;(如图)
(4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边是斜边的一半.(如图)
(1)(2)(3)(4)
几何表达式举例:
(1) ∵∠B=∠C
∴ AB = AC
(2) ∵∠A=∠B=∠C
∴ΔABC是等边三角形
(3) ∵∠A=60°
又∵AB = AC
∴ΔABC是等边三角形
(4) ∵∠C=90°∠B=30°
∴AC =AB
17.关于轴对称的定理
(1)关于某条直线对称的两个图形是全等形;(如图)
(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.(如图)
几何表达式举例:
(1) ∵ΔABC、ΔEGF关于MN轴对称
∴ΔABC≌ΔEGF
(2) ∵ΔABC、ΔEGF关于MN轴对称
∴OA=OE MN⊥AE
18.勾股定理及逆定理:
(1)直角三角形的两直角边a、b的平方和等于斜边c的平方,即a2+b2=c2;(如图)
(2)如果三角形的三边长有下面关系: a2+b2=c2,那么这个三角形是直角三角形.(如图)
几何表达式举例:
(1) ∵ΔABC是直角三角形
∴a2+b2=c2
(2) ∵a2+b2=c2
∴ΔABC是直角三角形
19.RtΔ斜边中线定理及逆定理:
(1)直角三角形中,斜边上的中线是斜边的一半;(如图)
(2)如果三角形一边上的中线是这边的一半,那么这个三角形是直角三角形.(如图)
几何表达式举例:
∵ΔABC是直角三角形
∵D是AB的中点
∴CD = AB
(2) ∵CD=AD=BD
∴ΔABC是直角三角形
几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)
一 基本概念:
三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.
二 常识:
1.三角形中,第三边长的判断: 另两边之差<第三边<另两边之和.
2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.
3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD·AB=BE·CA.
4.三角形能否成立的条件是:最长边<另两边之和.
5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和.
6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.
7.如图,双垂图形中,有两个重要的性质,即:
(1) AC·CB=CD·AB ; (2)∠1=∠B ,∠2=∠A .
8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.
9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.
10.等边三角形是特殊的等腰三角形.
11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明.
12.符合“AAA”“SSA”条件的三角形不能判定全等.
13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.
14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.
15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.
16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.
17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图.
※18.几何重要图形和辅助线:
(1)选取和作辅助线的原则:
① 构造特殊图形,使可用的定理增加;
② 一举多得;
③ 聚合题目中的分散条件,转移线段,转移角;
④ 作辅助线必须符合几何基本作图.
(2)已知角平分线.(若BD是角平分线)
① 在BA上截取BE=BC构造全等,转移线段和角;
② 过D点作DE∥BC交AB于E,构造等腰三角形 .
(3)已知三角形中线(若AD是BC的中线)
① 过D点作DE∥AC交AB于E,构造中位线 ;
② 延长AD到E,使DE=AD
连结CE构造全等,转移线段和角;
③ ∵AD是中线
∴SΔABD= SΔADC
(等底等高的三角形等面积)
(4) 已知等腰三角形ABC中,AB=AC
① 作等腰三角形ABC底边的中线AD
(顶角的平分线或底边的高)构造全
等三角形;
② 作等腰三角形ABC一边的平行线DE,构造
新的等腰三角形.
(5)其它
作等边三角形ABC
一边 的平行线DE,构造新的等边三角形;
② 作CE∥AB,转移角;
③ 延长BD与AC交于E,不规则图形转化为规则图形;
④ 多边形转化为三角形;
⑤ 延长BC到D,使CD=BC,连结AD,直角三角形转化为等腰三角形;
⑥ 若a∥b,AC,BC是角平
分线,则∠C=90°.
勾股实数专题
2、在Rt△ABC中,∠C=90°,a=12,b=16, 则c的长为( )
A:26 B:18 C:20 D:2
4、在Rt△ABC中,∠C=90°,∠B=45°,c=10,则a的长为( )
A:5 B: C: D:
5、下列定理中,没有逆定理的是( )
A:两直线平行,内错角相等 B:直角三角形两锐角互余
C:对顶角相等 D:同位角相等,两直线平行
6、△ABC中,∠A、∠B、∠C的对边分别是a、b、c,AB=8,BC=15,CA=17,则下列结论不正确的是( )
A:△ABC是直角三角形,且AC为斜边 B:△ABC是直角三角形,且∠ABC=90°
C:△ABC的面积是60 D:△ABC是直角三角形,且∠A=60°
7、等边三角形的边长为2,则该三角形的面积为( )
A: B: C: D:3
9、如图一艘轮船以16海里∕小时的速度从港口A出发向东北方向航行,另一轮船12海里∕小时从港口A出发向东南方向航行,离开港口3小时后,则两船相距( )
A:36 海里 B:48 海里 C:60海里 D:84海里
10、若中,,高AD=12,则BC的长为( )
A:14 B:4 C:14或4 D:以上都不对
二、填空题(每小题4分,共40分)
12、如图所示,以的三边向 外作正方形,其面积分别
为,且 ;
14、如图,,则AD= ;
16、已知一个直角三角形的两条直角边分别为6cm、8cm,那么这个直角三角形斜边上的高为 ;
19、如图,已知一根长8m的竹杆在离地3m处断裂,竹杆顶部抵着地
面,此时,顶部距底部有 m;
20、一艘小船早晨8:00出发,它以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时的速度向南航行,上午10:00,两小相距 海里。
三、解答题(每小题10分,共70分)
21、如图,为修通铁路凿通隧道AC,量出∠A=40°∠B=50°,AB=5公里,BC=4公里,若每天凿隧道0.3公里,问几天才能把隧道AB凿通?
22、如图,每个小方格的边长都为1.求图中格点四边形ABCD的面积。
23、如图所示,有一条小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?
24、如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9。
(1)求DC的长。
(2)求AB的长。
25、如图9,在海上观察所A,我边防海警发现正北6km的B处有一可疑船只正在向东方向8km的C处行驶.我边防海警即刻派船前往C处拦截.若可疑船只的行驶速度为40km/h,则我边防海警船的速度为多少时,才能恰好在C处将可疑船只截住?
C
A
B
D
26、如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.求小明到达的终止点与原出发点的距离.
27、如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?
例1 已知一个立方体盒子的容积为216cm3,问做这样的一个正方体盒子(无盖)需要多少平方厘米的纸板?
例2 若某数的立方根等于这个数的算术平方根,求这个数。
例3 下列说法中:①无限小数是无理数;②无理数是无限小数;③无理数的平方一定是无理数;④实数与数轴上的点是一一对应的。正确的个数是( )A、1 B、2 C、3 D、4
C
A
B
例4 (1)
8km
6km
10
40
20
40
出发点
70
终止点
已知
(2)设
(3)若
(4)设a、b是两个不相等的有理数,试判断实数是有理数还是无理数,并说明理由。
例5 (1)已知2m-3和m-12是数p的平方根,试求p的值。
(2)已知m,n是有理数,且,求m,n的值。
(3)△ABC的三边长为a、b、c,a和b满足,求c的取值范围。
(4)已知,求x的个位数字。
训练题:
一、填空题
1、的算术平方根是 。
2、已知一块长方形的地长与宽的比为3:2,面积为3174平方米,则这块地的长为 米。
3、已知 。
4、已知= 。
5、设等式在实数范围内成立,其中a、x、y是两两不相等的实数,则的值是 。
6、已知a、b为正数,则下列命题成立的:
若
根据以上3个命题所提供的规律,若a+6=9,则 。
7、已知实数a满足 。
8、已知实数 。
9、已知x、y是有理数,且x、y满足,则x+y= 。
10、由下列等式:
……
所揭示的规律,可得出一般的结论是 。
11、已知实数a满足 。
12、设则A、B中数值较小的是 。
13、在实数范围内解方程则x= ,y= .
14、使式子有意义的x的取值范围是 。
15、若的值为 。
16、一个正数x的两个平方根分别是a+1和a-3,则a= ,x= .
17、写出一个只含有字母的代数式,要求:(1)要使此代数式有意义,字母必须取全体实数;(2)此代数式的值恒为负数。 。
二、选择题:
1、的平方根是( )A、-6 B、6 C、±6 D、±
2、下列命题:①(-3)2的平方根是-3 ;②-8的立方根是-2;③的算术平方根是3;④平方根与立方根相等的数只有0; 其中正确的命题的个数有( ) A、1个 B、2个 C、3个 D、4个
3、若( )
A、0 B、1 C、-1 D、2
4、已知( ) A、 B、 C、 D、
5、使等式成立的x 的值( ) A、是正数 B、是负数 C、是0 D、不能确定
6、如果( ) A、 B、 C、 D、
7、下面5个数:,其中是有理数的有( )A、0个 B、1个 C、2个 D、3个
8、已知
9、已知:
10、在实数范围内,设,求a的各位数字是什么?
11、已知x、y是实数,且
图形的平移与旋转专题
一、填空题
1、在括号内填上图形从甲到乙的变换关系:
( )
甲
乙
甲
乙
乙
甲
( )
( )
2、钟表的秒针匀速旋转一周需要60秒.20秒内,秒针旋转的角度是 ;分针经过15 分后,分针转过的角度是 ;分针从数字12出发,转过1500,则它指的数字是 .
图1
图2
3、如图1,当半径为30cm的转动轮转过120°角时,传送带上的物体A平移的距离为 cm。
4、图2中的图案绕中心至少旋转 度后能和原来的图案相互重合。
5、图3是两张全等的图案,它们完全重合地叠放在一起,按住下面的图案不动,将上面图案绕点O顺时针旋转,至少旋转 度角后,两张图案能够完全重合.
6、一个正三角形绕其一个顶点按同一方向连续旋转五次,每次转过的角度为600, 旋转前后所有的图形共同组成的图案是 .
7、图4中△是△平移后得到的三角形,则
△≌△,理由是 。
8、△ABC和△DCE是等边三角形,则在图5中,△ACE绕着c点沿
方向旋转 度可得到△BCD.
图5
图4
A1
B1
C1
A
C
B
A
C
D
E 第六题
B
二、选择题
1、下列图形中,不能由图形M经过一次平移或旋转得到的是( ).
A
B
C
D
M
图6
2、如图6,ΔABC和ΔADE都是等腰直角三角形,∠ACB和∠ADE都是直角,点C在AE上,ΔABC绕着A点经过逆时针旋转后能够与ΔADE重合得到左图,再将左图作为“基本图形”绕着A点经过逆时针连续旋转得到右图.两次旋转的角度分别为( ).
45°,90° B、90°,45°
C、60°,30° D、30°,60°
图7
3、图7,四边形EFGH是由四边形ABCD平移得到的,已知AD=5,∠B=700,则( ).
A. FG=5, ∠G=700 B. EH=5, ∠F=700
C. EF=5, ∠F=700 D. EF=5. ∠E=700
4、图8是日本“三菱”汽车的标志,它可以看作是由菱形通过旋转得到的,每次旋转了( ).
A、60° B、90°C、120° D、150°
图9
A
E
D
B C
5、如图9,ΔABC和ΔADE均为正三角形,则图中可看作是旋转关系的三角形是( ).
A. ΔABC和ΔADE B.
展开阅读全文