资源描述
函数教案
教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.
教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;
教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;
一、与函数相关的概念
(一)函数的有关概念
1.函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.
记作:y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
注意:
“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
2. 构成函数的三要素:
定义域、对应关系和值域
3.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;
(2)无穷区间;
(3)区间的数轴表示.
4.一次函数、二次函数、反比例函数的定义域和值域讨论.
判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?
(1)f ( x ) = (x-1) 0;g ( x ) = 1 (2)f ( x ) = x; g ( x ) =
(3)f ( x ) = x 2;f ( x ) = (x + 1) 2 (4)f ( x ) = | x | ;g ( x ) =
(二)课堂练习
求下列函数的定义域
(1)(2)(3)
(4)(5)(6)
(三)函数的复合型
设y是u的函数y=f(u),而u又是x的函数u=g(x),设M表示u=g(x)的值域,N是函数y=f(u)的定义域,当M⊆N,则y成为x的函数,记为y=f[g(x)].这个函数叫做由y=f(u)及u=g(x)复合而成的复合函数,u叫做中间变量,f称为外层函数,g称为内层函数.
二、函数的表达方式
函数的表达方式:解析法、图像法、列表法
(一)解决函数问题
【例1】某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表示法表示函数y=f(x).
【例2】将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数关系式,并求定义域和值域,作出函数的图象.
【例3】向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是
( )
【例4】求下列函数的值域:
(1)y=x2-2x(-1≤x≤2);(2)y=x4+1.
注意:分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.
三、函数的映射
1. 对于任何一个实数a,数轴上都有唯一的点P和它对应;
2. 对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应;
3. 对于任意一个三角形,都有唯一确定的面积和它对应;
4. 函数的概念.
新课教学
1、函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射.
2、什么叫做映射?
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射、记作“f:AB”
注意:
(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其中f表示具体的对应法则,可以用汉字叙述.
(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。
例题分析:下列哪些对应是从集合A到集合B的映射?
(1)A={P | P是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;
(2)A={ P | P是平面直角体系中的点},B={(x,y)| x∈R,y∈R},对应关系f:平面直角体系中的点与它的坐标对应;
(3)A={三角形},B={x | x是圆},对应关系f:每一个三角形都对应它的内切圆;
四、函数的单调性
教学目的:通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图象理解和研究函数的性质;能够熟练应用定义判断数在某区间上的的单调性.
教学难点:利用函数的单调性定义判断、证明函数的单调性.
一、 引入课题
1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:
y
x
1
-1
1
-1
y
x
1
-1
1
-1
y
x
1
-1
1
-1
随x的增大,y的值有什么变化?
能否看出函数的最大、最小值?
函数图象是否具有某种对称性?
二、 新课教学
(一)函数单调性定义
1.增函数
一般地,设函数y=f(x)的定义域为I,
如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.
思考:仿照增函数的定义说出减函数的定义.
注意:
函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;
必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) .
2.函数的单调性定义
如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间:
3.判断函数单调性的方法步骤
利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:
任取x1,x2∈D,且x1<x2;
作差f(x1)-f(x2);
变形(通常是因式分解和配方);
定号(即判断差f(x1)-f(x2)的正负);
下结论(即指出函数f(x)在给定的区间D上的单调性).
提高作业:设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),
求f(0)、f(1)的值;
若f(3)=1,求不等式f(x)+f(x-2)>1的解集.
五、函数的奇偶性
教学目的:(1)理解函数的奇偶性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)学会判断函数的奇偶性.
教学重点:函数的奇偶性及其几何意义.
一、新课教学
(一)函数的奇偶性定义
图象关于y轴对称的函数即是偶函数,图象关于原点对称的函数即是奇函数.
1.偶函数:对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
2.奇函数:对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.
注意:
函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).
(二)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
(三)典型例题
1.判断函数的奇偶性:
若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;
若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.
3.函数的奇偶性与单调性的关系
例1.已知f(x)是奇函数,在(0,+∞)上是增函数,证明:f(x)在(-∞,0)上也是增函数
规律:偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致.
作业:判断下列函数的奇偶性:
; ; ()
思考:
已知是定义在R上的函数,
设,
试判断的奇偶性;
试判断的关系;
由此你能猜想得出什么样的结论,并说明理由.
六、函数的最值问题
教学重点:函数的最大(小)值及其几何意义.
教学难点:利用函数的单调性求函数的最大(小)值.
利用函数的单调性判断函数的最值问题
一、新课教学
(一)函数最大(小)值定义
1.最大值
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
(1)对于任意的x∈I,都有f(x)≤M;
(2)存在x0∈I,使得f(x0) = M
那么,称M是函数y=f(x)的最大值.
注意:
函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0) = M;
函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M).
2.利用函数单调性的判断函数的最大(小)值的方法
利用二次函数的性质(配方法)求函数的最大(小)值
利用图象求函数的最大(小)值
利用函数单调性的判断函数的最大(小)值
如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);
如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);
(二)典型例题
求函数在区间[2,6]上的最大值和最小值.
七、方程的根和函数的零点
一元二次方程及其相应的二次函数
①方程x2-2x-3=0的解为 ,函数y=x2-2x-3的图象与x轴有 个交点,坐标为 .
②方程x2-2x+1=0的解为 ,函数y=x2-2x+1的图象与x轴有 个交点,坐标为 .
根据以上观察结果,可以得到:
结论:一元二次方程的根就是相应的二次函数图象与x轴交点的 .若一元二次方程无实数根,则相应的二次函数图象与x轴无交点.
函数零点的概念:
对于函数,把使成立的实数叫做函数的零点.
函数零点的意义:
函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标.
即:方程有实数根函数的图象与轴有交点函数有零点.
函数零点的求法:
求函数的零点:
(代数法)求方程的实数根;
(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点
二次函数的零点:
二次函数:.
(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
1.利用函数图象判断下列方程有没有根,有几个根:
(1);(2);(3);(4).
2.利用函数的图象,指出下列函数零点所在的大致区间:
(1);(2);(3);
(4)
3. 当时,函数的零点是怎样分布的?
(1)研究,,
(2),的相互关系,以零点作为研究出发点,并将研究结果尝试用一种系统的、简洁的方式总结表达.
函数二分法及步骤:
对于在区间,上连续不断,且满足·的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
给定精度,用二分法求函数的零点近似值的步骤如下:
1.确定区间,,验证·,给定精度;
2.求区间,的中点;
3.计算:
二分法的一般步骤:
若=,则就是函数的零点;
若·<,则令=(此时零点);
若·<,则令=(此时零点);
4.判断是否达到精度;
即若,则得到零点零点值(或);否则重复步骤2~4.
八、指数函数
1. 整数指数幂的运算性质;
2. 根式的概念;
如果一个数的平方等于a,那么这个数叫做a的平方根,如果一个数的立方等于a,那么这个数叫做a的立方根;
(一)指数与指数幂的运算
1.根式的概念
一般地,如果,那么叫做的次方根,其中>1,且∈*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式,这里叫做根指数,叫做被开方数.
当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).
由此可得:负数没有偶次方根;0的任何次方根都是0,记作.
结论:当是奇数时,
当是偶数时,
2.分数指数幂
正数的分数指数幂的意义
规定:
0的正分数指数幂等于0,0的负分数指数幂没有意义
3.有理指数幂的运算性质
(1)· ;
(2) ;
(3) .
指数函数的一般形式
(一)指数函数的概念
一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R.
函数一般性质
图象特征
函数性质
向x、y轴正负方向无限延伸
函数的定义域为R
图象关于原点和y轴不对称
非奇非偶函数
函数图象都在x轴上方
函数的值域为R+
函数图象都过定点(0,1)
自左向右看,
图象逐渐上升
自左向右看,
图象逐渐下降
增函数
减函数
在第一象限内的图象纵坐标都大于1
在第一象限内的图象纵坐标都小于1
在第二象限内的图象纵坐标都小于1
在第二象限内的图象纵坐标都大于1
图象上升趋势是越来越陡
图象上升趋势是越来越缓
函数值开始增长较慢,到了某一值后增长速度极快;
函数值开始减小极快,到了某一值后减小速度较慢;
九、对数函数
(一)对数函数性质和运算
(1)对数的定义:;
(2)对数恒等式:;
1.对数的运算性质
运算性质:
如果,且,,,那么:
·+;
-;
.
2. 换底公式
(,且;,且;).
3.对数函数一般变形
(1);(2).
思考题:
设正整数、、(≤≤)和实数、、、满足:
,,
求、、的值.
(二)对数函数的图象和性质
内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.
(1)在同一坐标系中画出下列对数函数的图象;
(1)
(2)
(3)
(4)
(2)对数函数的性质如下表格:
图象特征
函数性质
函数图象都在y轴右侧
函数的定义域为(0,+∞)
图象关于原点和y轴不对称
非奇非偶函数
向y轴正负方向无限延伸
函数的值域为R
函数图象都过定点(1,1)
自左向右看,
图象逐渐上升
自左向右看,
图象逐渐下降
增函数
减函数
第一象限的图象纵坐标都大于0
第一象限的图象纵坐标都大于0
第二象限的图象纵坐标都小于0
第二象限的图象纵坐标都小于0
作业练习:
(1)已知函数,求函数的定义域,并讨论它的奇偶性和单调性
(2)求函数的单调区间
十、幂函数.
一般地,形如的函数称为幂函数,其中为常数.
(1); (2);(3);
(4);(5).
幂函数性质归纳.
(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);
(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;
(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.
展开阅读全文