收藏 分销(赏)

全国中考数学分类解析汇编专题14:规律性问题.doc

上传人:精*** 文档编号:10310079 上传时间:2025-05-22 格式:DOC 页数:46 大小:1.44MB
下载 相关 举报
全国中考数学分类解析汇编专题14:规律性问题.doc_第1页
第1页 / 共46页
全国中考数学分类解析汇编专题14:规律性问题.doc_第2页
第2页 / 共46页
点击查看更多>>
资源描述
2 012年全国中考数学分类解析汇编 专题14:规律性问题 一、选择题 1. (2012广东深圳3分)如图,已知:∠MON=30o,点A1、A2、A3 在射线ON上,点B1、B2、B3…..在射线OM上,△A1B1A2. △A2B2A3、△A3B3A4……均为等边三角形,若OA1=l,则△A6B6A7 的边长为【 】 A.6 B.12 C.32 D.64 【答案】C。 【考点】分类归纳(图形的变化类),等边三角形的性质,三角形内角和定理,平行的判定和性质,含30度角的直角三角形的性质。 【分析】如图,∵△A1B1A2是等边三角形, ∴A1B1=A2B1,∠3=∠4=∠12=60°。∴∠2=120°。 ∵∠MON=30°,∴∠1=180°-120°-30°=30°。 又∵∠3=60°,∴∠5=180°-60°-30°=90°。 ∵∠MON=∠1=30°,∴OA1=A1B1=1。∴A2B1=1。 ∵△A2B2A3、△A3B3A4是等边三角形, ∴∠11=∠10=60°,∠13=60°。 ∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3。 ∴∠1=∠6=∠7=30°,∠5=∠8=90°。∴A2B2=2B1A2,B3A3=2B2A3。 ∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16。 以此类推:A6B6=32B1A2=32,即△A6B6A7 的边长为32。故选C。 2. (2012浙江丽水、金华3分)小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是【 】   A.2010  B.2012  C.2014  D.2016 【答案】D。 【考点】分类归纳(图形的变化类)。 【分析】观察发现,三角数都是3的倍数,正方形数都是4的倍数,所以既是三角形数又是正方形数的一定是12的倍数,然后对各选项计算进行判断即可得解: ∵2010÷12=167…6,2012÷12=167…8,2014÷12=167…10,2016÷12=168, ∴2016既是三角形数又是正方形数。故选D。 3. (2012浙江绍兴4分)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设Pn﹣1Dn﹣2的中点为Dn﹣1,第n次将纸片折叠,使点A与点Dn﹣1重合,折痕与AD交于点Pn(n>2),则AP6的长为【 】   A. B. C. D. 【答案】A。 【考点】分类归纳(图形的变化类),翻折变换(折叠问题)。 【分析】由题意得,AD=BC=,AD1=AD﹣DD1=,AD2=,AD3=,…∴ADn=。 故AP1=,AP2=,AP3=…APn=。 ∴当n=14时,AP6=。故选A。 4. (2012江苏南通3分)如图,在△ABC中,∠ACB=90º,∠B=30º,AC=1,AC在直线l上.将△ABC 绕点A顺时针旋转到位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②, 可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3 =3+;…,按此规律继续旋转,直到得到点P2012为止,则AP2012=【 】 A.2011+671 B.2012+671 C.2013+671 D.2014+671 【答案】B。 【考点】分类归纳(图形的变化类),旋转的性质,锐角三角函数,特殊角的三角函数值。 【分析】寻找规律,发现将Rt△ABC绕点A,P1,P2,···顺时针旋转,每旋转一次, APi(i=1,2,3,···) 的长度依次增加2, ,1,且三次一循环,按此规律即可求解: ∵Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,∴AB=2,BC=。 根据旋转的性质,将Rt△ABC绕点A,P1,P2,···顺时针旋转,每旋转一次, APi(i=1,2,3,···) 的长度依次增加2, ,1,且三次一循环。 ∵2012÷3==670…2, ∴AP2012=670(3+ )+2+ =2012+671 。故选B。 5. (2012江苏盐城3分)已知整数满足下列条件:,,, ,…,依次类推,则的值为【 】 A. B. C. D. 【答案】B。 【考点】分类归纳(数字的变化类) 【分析】根据条件求出前几个数的值,寻找规律,分是奇数和偶数讨论:: ∵, , ,, ,, ,, …, ∴当是奇数时,,是偶数时, 。 ∴。故选B。 6. (2012江苏扬州3分)大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2013,则m的值是【 】 A.43 B.44 C.45 D.46 【答案】C。 【考点】分类归纳(数字的变化类)。 【分析】分析规律,然后找出2013所在的奇数的范围,即可得解: ∵23=3+5,33=7+9+11,43=13+15+17+19, … ∴m3分裂后的第一个数是m(m-1)+1,共有m个奇数。 ∵45×(45-1)+1=1981,46×(46-1)+1=2071, ∴第2013个奇数是底数为45的数的立方分裂后的一个奇数, ∴m=45。故选C。 7. (2012江苏镇江3分)边长为a的等边三角形,记为第1个等边三角形。取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形。取这个正六边形不相邻的三边中点顺次连接,又得到一个等边三角形,记为第2个等边三角形。取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图)…,按此方式依次操作。则第6个正六边形的边长是【 】 A. B. C. D. 【答案】A。 【考点】分类归纳(图形的变化类),等边三角形和判定和性质,三角形中位线定理。 【分析】如图,双向延长EF分别交AB、AC于点G、H。 根据三角形中位线定理,得GE=FH=,GB=CH=。 ∴AG=AH=。 又∵△ABC中,∠A=600,∴△AGH是等边三角形。 ∴GH=AG=AH=。EF= GH-GE-FH=。 ∴第2个等边三角形的边长为。 同理,第3个等边三角形的边长为,第4个等边三角形的边长为,第5个等边三角形的边长为,第6个等边三角形的边长为。 又∵相应正六边形的边长是等边三角形的边长的, ∴第6个正六边形的边长是。故选A。 8. (2012福建莆田4分)如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2). 把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A—B—C -D—A一…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是【 】 A.(1,-1)   B.(-1,1) C.(-1,-2)  D.(1,-2) 【答案】B。 【考点】分类归纳(图形的变化类),点的坐标。 【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案: ∵A(1,1),B(-1,1),C(-1,-2),D(1,-2), ∴AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3。 ∴绕四边形ABCD一周的细线长度为2+3+2+3=10, ∵2012÷10=201…2, ∴细线另一端在绕四边形第202圈的第2个单位长度的位置,即点B的位置。 ∴所求点的坐标为(-1,1)。故选B。 9. (2012湖北荆门3分) 已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2012个图形中直角三角形的个数有【 】 A. 8048个 B. 4024个 C. 2012个 D. 1066个 【答案】B。 【考点】分类归纳(图形的变化类)。 【分析】写出前几个图形中的直角三角形的个数,并找出规律: 第1个图形,有4个直角三角形,第2个图形,有4个直角三角形, 第3个图形,有8个直角三角形,第4个图形,有8个直角三角形, …, 依次类推,当n为奇数时,三角形的个数是2(n+1),当n为偶数时,三角形的个数是2n个, 所以,第2012个图形中直角三角形的个数是2×2012=4024。故选B。 10. (2012湖北荆州3分)已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2012个图形中直角三角形的个数有【 】 A. 8048个 B. 4024个 C. 2012个 D. 1066个 【答案】B。 【考点】分类归纳(图形的变化类)。 【分析】写出前几个图形中的直角三角形的个数,并找出规律: 第1个图形,有4个直角三角形,第2个图形,有4个直角三角形, 第3个图形,有8个直角三角形,第4个图形,有8个直角三角形, …, 依次类推,当n为奇数时,三角形的个数是2(n+1),当n为偶数时,三角形的个数是2n个, 所以,第2012个图形中直角三角形的个数是2×2012=4024。故选B。 11. (2012湖北鄂州3分)在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,………按这样的规律进行下去,第2012个正方形的面积为【 】 A. B. C. D. 【答案】D。 【考点】分类归纳(图形的变化类),坐标与图形性质,正方形的性质,相似三角形的判定和性质,勾股定理。 【分析】∵正方形ABCD,∴AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA。 ∴∠ADO+∠DAO=90°,∠DAO+∠BAA1=90°。∴∠ADO=∠BAA1。 ∵∠DOA=∠ABA1,∴△DOA∽△ABA1。∴。 ∵AB=AD=,∴BA1=。 ∴第2个正方形A1B1C1C的边长A1C=A1B+BC=,面积是。 同理第3个正方形的边长是,面积是: 。 第4个正方形的边长是,面积是 … 第2012个正方形的边长是 ,面积是。 故选D。 12. (2012湖南常德3分)若图1中的线段长为1,将此线段三等分,并以中间的一段为边作等边三角形,然后去掉这一段,得到图2,再将图2中的每一段作类似变形,得到图3,按上述方法继续下去得到图4,则图4中的折线的总长度为【 】 A. 2 B. C. D. 【答案】D。 【考点】分类归纳(图形的变化类),等边三角形的性质。 【分析】寻找规律,从两方面考虑: (1)每个图形中每一条短线段的长:图2中每一条短线段的长为,图3中每一条短线段的长为,图4中每一条短线段的长为。 (2)每个图形中短线段的根数:图2中有4根,图3中有16根,图4中有64根。 ∴图4中的折线的总长度为。故选D。 【推广到一般,图n中的折线的总长度为】 13. (2012湖南永州3分)如图,一枚棋子放在七角棋盘的第0号角,现依逆时针方向移动这枚棋子,其各步依次移动1,2,3,…,n个角,如第一步从0号角移动到第1号角,第二步从第1号角移动到第3号角,第三步从第3号角移动到第6号角,….若这枚棋子不停地移动下去,则这枚棋子永远不能到达的角的个数是【 】 A.0 B.1 C.2 D.3 【答案】D。 【考点】分类归纳(图形的变化类)。 【分析】寻找规律:因棋子移动了k次后走过的总角数是1+2+3+…+k=k(k+1), 当k=1时,棋子移动的总角数是1,棋子移动到第1号角; 当k=2时,棋子移动的总角数是3,棋子移动到第3号角; 当k=3时,棋子移动的总角数是6,棋子移动到第6号角; 当k=4时,棋子移动的总角数是10,棋子移动到第10-7=3号角; 当k=5时,棋子移动的总角数是15,棋子移动到第15-2×7=1号角; 当k=6时,棋子移动的总角数是21,棋子移动到第21-3×7=0号角; 当k=7时,棋子移动的总角数是28,棋子移动到第28-4×7=0号角。 发现第2,4,5角没有停棋。 当k=7n+t(n≥0,1≤t≤7,都为整数)时,棋子移动的总角数是 , ∵中和是连续数,∴是7的倍数。 ∴是7的倍数。 ∴棋子移动的位置与k=t移动的位置相同。 故第2,4,5格没有停棋,即这枚棋子永远不能到达的角的个数是3。故选D。 14. (2012贵州铜仁4分)如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是【 】   A.54  B.110  C.19  D.109 【答案】D。 【考点】分类归纳(图形的变化类)。 【分析】寻找规律: 第①个图形中有1个平行四边形; 第②个图形中有1+4=5个平行四边形; 第③个图形中有1+4+6=11个平行四边形; 第④个图形中有1+4+6+8=19个平行四边形; … 第n个图形中有1+2(2+3+4+…+n)个平行四边形; 则第⑩个图形中有1+2(2+3+4+5+6+7+8+9+10)=109个平行四边形。故选D。 15. (2012山东滨州3分)求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为【 】   A.52012﹣1  B.52013﹣1  C.  D. 【答案】C。 【考点】分类归纳(数字的变化类),同底数幂的乘法。 【分析】设S=1+5+52+53+…+52012,则5S=5+52+53+54+…+52013, ∴5S﹣S=52013﹣1,∴S=。故选C。 16. (2012山东聊城3分)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=﹣x分别交于A1,A2,A3,A4…,则点A30的坐标是【 】   A.(30,30)  B.(﹣8,8)  C.(﹣4,4)  D.(4,﹣4) 【答案】C。 【考点】分类归纳(图形的变化类),一次函数综合题,解直角三角形。 【分析】∵A1,A2,A3,A4…四点一个周期,而30÷4=7余2, ∴A30在直线y=﹣x上,且在第二象限。 即射线OA30与x轴的夹角是45°,如图OA=8,∠AOB=45°, ∵在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…, ∴OA30=8。 ∵A30的横坐标是﹣8sin45°=﹣4,纵坐标是4,即A30的坐标是(﹣4,4)。 故选C。 17. (2012山东日照4分)如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1C1D1;在等腰直角三角形OA1B1中,作内接正方形A2B2C2D2;在等腰直角三角形OA2B2中,作内接正方形A3B3C3D3;……;依次作下去,则第n个正方形AnBnCnDn的边长是【 】 (A) (B) (C) (D) 【答案】B。 【考点】分类归纳(图形的变化类),等腰直角三角形和正方形的性质。 【分析】寻找规律:∵等腰直角三角形OAB中,∠A=∠B=450, ∴△AA1C1和△BB1D1都是等腰直角三角形。∴AC1=A1C1,BD1=B1D1。 又∵正方形A1B1C1D1中,A1C1=C1D1=B1D1=A1B1,∴AC1=C1D1=D1B。 又∵AB=1,∴C1D1=,即正方形A1B1C1D1的边长为。 同理,正方形A2B2C2D2的边长为,正方形A3B3C3D3的边长为,……正方形AnBnCnDn的边长为。故选B。 18. (2012山东潍坊3分)下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l3,14,l5,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为【 】. A.32 B.126 C.135 D.144 【答案】D。 【考点】分类归纳(数字的变化类),一元二次方程的应用。 【分析】由日历表可知,圈出的9个数中,最大数与最小数的差总为16,又已知最大数与最小数的积为192,所以设最大数为x,则最小数为x-16。 ∴x(x-16)=192,解得x=24或x=-8(负数舍去)。 ∴最大数为24,最小数为8。 ∴圈出的9个数为8,9,10,15,16,17,22,23,24。和为144。故选D。 19. (2012山东淄博4分)骰子是6个面上分别写有数字1,2,3,4,5,6的小立方体,它任意两对面上所写的两个数字之和为7.将这样相同的几个骰子按照相接触的两个面上的数字的积为6摆成一个几何体,这个几何体的三视图如图所示.已知图中所标注的是部分面上的数字,则“※”所代表的数是【 】 (A)2 (B)4 (C)5 (D)6 【答案】 B。 【考点】分类归纳(图形的变化类),几何体的三视图。 【分析】由任意两对面上所写的两个数字之和为7,相接触的两个面上的数字的积为6,结合左视图知,几何体下面5个小立方体的左边的数字是1,右边的数字是6;结合主视图知,几何体右下方的小立方体前面的数字是3,反面的数字是4;根据相接触的两个面上的数字的积为6,几何体右下方的小立方体上面的数字只能是2(如图)。 根据相接触的两个面上的数字的积为6,几何体右上方的小立方体下面的数字是3;根据任意两对面上所写的两个数字之和为7,几何体右上方的小立方体上面的数字是4。 ∴俯视图上“※”所代表的数是4。故选B。 二、填空题 1. (2012北京市4分)在平面直角坐标系中,我们把横 、纵坐标都是整数的点叫做整点.已知点 A(0,4),点B是轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点 B的横坐标的所有可能值是 ▲ ;当点B的横坐标为4n(n为正整数)时,m= (用含n 的代数式表示.) 【答案】3或4;6n-3。 【考点】分类归纳(图形的变化类),点的坐标,矩形的性质。 【分析】根据题意画出图形,再找出点B的横坐标与△AOB内部(不包括边界)的整点m之间的关系即可求出答案: 如图:当点B在(3,0)点或(4,0)点时,△AOB内部(不包括边界)的整点为(1,1), (1,2),(2,1),共三个点,∴当m=3时,点B的横坐标的所有可能值是3或4。 当点B的横坐标为4n(n为正整数)时, ∵以OB为长OA为宽的矩形内(不包括边界)的整点个数为(4n-1)×3=12 n-3,对角线AB上的整点个数总为3, ∴△AOB内部(不包括边界)的整点个数m=(12 n-3-3)÷2=6n-3。 2. (2012重庆市4分)甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次取4张或(4﹣k)张,乙每次取6张或(6﹣k)张(k是常数,0<k<4).经统计,甲共取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好相等,那么纸牌最少有 ▲ 张. 【答案】108。 【考点】分类归纳(数字的变化类)。 【分析】设甲a次取(4﹣k)张,乙b次取(6﹣k)张,则甲(15﹣a)次取4张,乙(17﹣b)次取6张。 ∴甲共取牌(60﹣ka)张,乙共取牌(102﹣kb)张。 ∴两人总共取牌:N=(60﹣ka)+(102﹣kb)=162﹣k(a+b)张。 要使牌最少,即要使N最小。 ∵k为正数,∴要使N最小,只要a+b最大。 ∵由题意得,a≤15,b≤16,又最终两人所取牌的总张数恰好相等,∴k(b﹣a)=42。 又∵0<k<4,b﹣a为整数,∴由整除的知识, k=1,2,3。 ①当k=1时,b﹣a=42,因为a≤15,b≤16,所以这种情况舍去; ②当k=2时,b﹣a=21,因为a≤15,b≤16,所以这种情况舍去; ③当k=3时,b﹣a=14,此时可以符合题意。 ∴要保证a≤15,b≤16,b﹣a=14,(a+b)值最大, ∴b=16,a=2或b=15,a=1或b=14,a=0。 ∵当b=16,a=2时,a+b=18;当b=15,a=1时,a+b=16;当b=14,a=0时,a+b=14; ∴当b=16,a=2时,a+b最大。 ∴k=3,(a+b)=18,N=﹣3×18+162=108(张)。 ∴满足条件的纸牌最少有108张。 3. (2012广东广州3分)如图,在标有刻度的直线l上,从点A开始, 以AB=1为直径画半圆,记为第1个半圆; 以BC=2为直径画半圆,记为第2个半圆; 以CD=4为直径画半圆,记为第3个半圆; 以DE=8为直径画半圆,记为第4个半圆, …按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的  ▲  倍,第n个半圆的面积为   ▲  (结果保留π) 【答案】4;。 【考点】分类归纳(图形的变化类),半圆的面积,负整数指数幂,幂的乘方,同底幂乘法。 【分析】由已知,第3个半圆面积为:,第4个半圆的面积为:, ∴第4个半圆的面积是第3个半圆面积的=4倍。 由已知,第1个半圆的半径为,第2个半圆的半径为,第3个半圆的半径为, ······第n个半圆的半径为。 ∴第n个半圆的面积是。 4. (2012广东梅州3分)如图,连接在一起的两个正方形的边长都为1cm,一个微型机器人由点A开始按ABCDEFCGA…的顺序沿正方形的边循环移动.①第一次到达G点时移动了  ▲ cm;②当微型机器人移动了2012cm时,它停在  ▲ 点. 【答案】7;E。 【考点】分类归纳(图形的变化类)。 【分析】①由图可知,从A开始,第一次移动到G点,共经过AB、BC、CD、DE、EF、FC、CG七条边,所以共移动了7cm; ②∵机器人移动一圈是8cm,而2012÷8=251…4, ∴移动2012cm,是第251圈后再走4cm正好到达E点。 5. (2012广东湛江4分)如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF、再以对角线AE为边作笫三个正方形AEGH,如此下去….若正方形ABCD的边长记为a1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,an,则an=  ▲ . 【答案】。 【考点】分类归纳(图形的变化类),正方形的性质,勾股定理,同底幂乘法。 【分析】分析规律: ∵a2=AC,且在Rt△ABC中,AB2+BC2=AC2, ∴。 同理 ∴。 6. (2012广东肇庆3分)观察下列一组数:,,,,,…… ,它们是按一定规律排列的,那么这一组数的第k个数是 ▲ . 【答案】。 【考点】分类归纳(数字的变化类)。 【分析】根据已知得出数字分母与分子的变化规律: 分子是连续的偶数,分母是连续的奇数, ∴第k个数分子是2k,分母是2k+1。∴这一组数的第k个数是。 7. (2012浙江台州5分)请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立: 1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,… 你规定的新运算a⊕b= ▲ (用a,b的一个代数式表示). 【答案】。 【考点】分类归纳(数字的变化类),新定义。 【分析】寻找规律: ∵, ,··· ∴。 8. (2012江苏南京2分)在平面直角坐标系中,规定把一个三角形先沿x轴翻折,再向右平移两个单位称为一次变换,如图,已知等边三角形ABC的顶点B、C的坐标分别是,(-1,-1),(-3,-1),把三角形ABC经过连续9次这样的变换得到三角形A’B’C’,则点A的对应点A’的坐标是 ▲ 【答案】(16,)。 【考点】分类归纳(图形的变化类),翻折变换(折叠问题),坐标与图形性质,等边三角形的性质,锐角三角函数定义,特殊角的三角函数值。 【分析】先由△ABC是等边三角形,点B、C的坐标分别是(-1,1)、(-3,-1),求得点A的坐标;再寻找规律,求出点A的对应点A′的坐标: 如图,作BC的中垂线交BC于点D,则 ∵△ABC是等边三角形,点B、C的坐标分别是(-1,1)、(-3,-1), ∴BD=1,。∴A(—2,)。 根据题意,可得规律:第n次变换后的点A的对应点的坐标:当n为奇数时为(2n-2,),当n为偶数时为(2n-2, )。 ∴把△ABC经过连续9次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是:(16,)。 9. (2012江苏宿迁3分)按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的块数是 ▲ . 【答案】365。 【考点】分类归纳(图形的变化类)。寻找规律, 【分析】画树状图:记第n个图案中黑色小正方形地砖的块数是an,则 ∴an-an-1=4(n-1)(n=2,3,4,···), ∴(a2-a1)+(a3-a2)+(a4-a3)+···+(an-an-1)=4+8+···+4(n-1), 即an-a1=4[1+2+3+···+(n-1)]= ∴an=+a1=。 当n=14时,a14 =。 10. (2012江苏无锡2分)如图的平面直角坐标系中有一个正六边形ABCDEF,其中C.D的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个六边形沿着x轴向右滚动,则在滚动过程中,这个六边形的顶点A.B.C.D.E、F中,会过点(45,2)的是点  ▲  . 【答案】B。 【考点】分类归纳(图形的变化类),坐标与图形性质,正多边形和圆,旋转的性质。 【分析】由正六边形ABCDEF中C.D的坐标分别为(1,0)和(2,0),得正六边形边长为1,周长为6。 ∴正六边形滚动一周等于6。如图所示。 当正六边形ABCDEF滚动到位置1,2,3,4,5,6,7时,顶点A.B.C.D.E、F的纵坐标为2。 位置1时,点A的横坐标也为2。 又∵(45-2)÷6=7…1, ∴恰好滚动7周多一个,即与位置2顶点的纵坐标相同,此点是点B。 ∴会过点(45,2)的是点B。 11. (2012广东河源4分)如图,连接在一起的两个正方形的边长都为1cm,一个微型机器人由点A开 始按ABCDEFCGA…的顺序沿正方形的边循环移动.①第一次到达点G时,微型机器人移动了 ▲ cm; ②当微型机器人移动了2012cm时,它停在 ▲ 点. 【答案】7;E。 【考点】分类归纳(图形的变化类)。 【分析】①由图可知,从A开始,第一次移动到G点,共经过AB、BC、CD、DE、EF、FC、CG七条边,所以共移动了7cm; ②∵机器人移动一圈是8cm,而2012÷8=251…4, ∴移动2012cm,是第251圈后再走4cm正好到达E点。 12. (2012福建三明4分)填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是 ▲ . 【答案】900。 【考点】分类归纳(数字变化类)。 【分析】寻找规律: 上面是1,2 ,3,4,…,;左下是1,4=22,9=32,16=42,…,; 右下是:从第二个图形开始,左下数字减上面数字差的平方: (4-2)2,(9-3)2,(16-4)2,… ∴a=(36-6)2=900。 13. (2012湖北恩施4分)观察数表 根据表中数的排列规律,则B+D=  ▲  . 【答案】23。 【考点】分类归纳(数字的变化类)。 【分析】∵仔细观察每一条虚线或与虚线平行的直线上的数字从左至右相加等于最上而的一个数字, ∴1+4+3=B,1+7+D+10+1=34。 ∴B=8,D=15。 ∴B+D=8+15=23。 14. (2012湖北鄂州3分)已知,如图,△OBC中是直角三角形,OB与x轴正半轴重合,∠OBC=90°,且OB=1,BC=,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的m倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的m倍,使OB2=OC1,得到△OB2C2,……,如此继续下去,得到△OB2012C2012,则m= ▲ 。点C2012的坐标是 ▲ 。 【答案】2;(22011,-22011)。 【考点】分类归纳(图形的变化类),坐标与图形的旋转变化,锐角三角函数定义,特殊角的三角函数值。 【分析】在△OBC中,∵OB=1,BC=,∴tan∠COB=。∴∠COB=60°,OC=2。 ∵OB1=mOB,OB1=OC,∴mOB=OC,即m=2。 ∵每一次的旋转角是60°,∴旋转6次一个周期(如图)。 ∵2012÷6=335…2, ∴点C2012的坐标跟C2的坐标在一条射线OC6n+2上。 ∵第1次旋转后,OC1=2;第2次旋转后,OC1=22;第3次旋转后,OC3=23;···第2012次旋转后,OC2012=22012。 ∵∠C2012OB2012=60°,∴OB2012=22011。B2012C2012==22011。 ∴点C2012的坐标为(22011,-22011)。 15. (2012湖南永州3分)我们把按照一定顺序排列的一列数称为数列,如1,3,9,19,33,…就是一个数列,如果一个数列从第二个数起,每一个数与它前一个数的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做这个等差数列的公差.如2,4,6,8,10就是一个等差数列,它的公差为2.如果一个数列的后一个数与前一个数的差组成的新数列是等差数列,则称这个数列为二阶等差数列.例如数列1,3,9,19,33,…,它的后一个数与前一个数的差组成的新数列是2,6,10,14,…,这是一个公差为4的等差数列,所以,数列1,3,9,19,33,…是一个二阶等差数列.那么,请问二阶等差数列1,3,7,13,…的第五个数应是  ▲  . 【答案】21。 【考点】新定义,分类归纳(数字的变化类)。 【分析】如图,寻找规律: 因此,n=13+8=21。  16. (2012湖南娄底4分)如图,如图所示的图案是按一定规律排列的,照此规律,在第1至第2012个图案中“”,共  ▲  个. 【答案】503。 【考点】分类归纳(图形的变化类)。 【分析】由图知4个图形一循环,因为2012被4整除,从而确定是共有第503♣。 17. (2012湖南衡阳3分)观察下列等式 ①sin30°= cos60°= ②sin45°= cos=45°= ③sin60°= cos30°= … 根据上述规律,计算sin2a+sin2(90°﹣a)= ▲ . 【答案】1。 【考点】分类归纳(数字的变化类),互余两角三角函数的关系。 【分析】根据①②③可得出规律,即sin2a+sin2(90°﹣a)=1,继而可得出答案 由题意得,sin230°+sin2(90°﹣30°)= sin230°+sin260°=; sin245°+sin2(90°﹣45°)= sin245°+sin245°=; sin260°+sin2(90°﹣60°)= sin260°+sin230°=; … ∴sin2a+sin2(90°﹣a)=1。  18. (2012湖南株洲3分)一组数据为:x,﹣2x2,4x3,﹣8x4,…观察其规律,推断第n个数据应为   ▲  . 【答案】。 【考点】分类归纳(数字的变化类)。 【分析】寻找规律:(1)单项式的系数为1,-2,3,-4···,即n为奇数时,系数为正数,n为偶数时,系数为负数,系数的绝对值为,即系数为; (2)单项式的指数为n。 ∴第n个数据应为。 19. (2012四川乐山3分)如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,…,∠An﹣1BC的平分线与∠An﹣1CD的平分线交于点An.设∠A=.则: (1)∠A1= ▲  ;(2)∠An= ▲  . 【答案】;。 【考点】三角形内角和定理,三角形的外角性质,分类归纳(图形的变化类)。 【分析】(1)∵A1B是∠ABC的平分线,A2B是∠A1BC的平分线, ∴∠A1BC=∠ABC,∠A1CD=∠ACD。 又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1, ∴(∠A+∠ABC)=∠ABC+∠A1。∴∠A1=∠A。 ∵∠A=,∴∠A1=。 (2)同理可得∠A2=∠A1=,∠A3=∠A2=,···,∴∠An=。 20. (2012四川达州3分)将边长分别为1、2、3、4……19、20的正方形置于直角坐标系第一象限,如 图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 ▲ . 【答案】210。 【考点】分类归纳(图形的变化类)。 【分析】由图可知:第一个阴影部分的面积=22-12,第二个阴影部分的面积=42-32,第三个图形的面积=62-52由此类推,第十个阴影部分的面积=202—192,因此,图中阴影部分的面积为: (22-1)+(42-32
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服