收藏 分销(赏)

高中数学高考导数题型分析及解题方法().doc

上传人:人****来 文档编号:10308504 上传时间:2025-05-22 格式:DOC 页数:61 大小:2.16MB
下载 相关 举报
高中数学高考导数题型分析及解题方法().doc_第1页
第1页 / 共61页
高中数学高考导数题型分析及解题方法().doc_第2页
第2页 / 共61页
点击查看更多>>
资源描述
导数题型分析及解题方法 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 在区间上的最大值是 2 2.已知函数处有极大值,则常数c= 6 ; 3.函数有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程 1.曲线在点处的切线方程是 2.若曲线在P点处的切线平行于直线,则P点的坐标为 (1,0) 3.若曲线的一条切线与直线垂直,则的方程为 4.求下列直线的方程: (1)曲线在P(-1,1)处的切线; (2)曲线过点P(3,5)的切线; 解:(1) 所以切线方程为 (2)显然点P(3,5)不在曲线上,所以可设切点为,则①又函数的导数为, 所以过点的切线的斜率为,又切线过、P(3,5)点,所以有②,由①②联立方程组得,,即切点为(1,1)时,切线斜率为;当切点为(5,25)时,切线斜率为;所以所求的切线有两条,方程分别为 题型三:利用导数研究函数的单调性,极值、最值 1.已知函数的切线方程为y=3x+1 (Ⅰ)若函数处有极值,求的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数在[-3,1]上的最大值; (Ⅲ)若函数在区间[-2,1]上单调递增,求实数b的取值范围 解:(1)由 过的切线方程为: ① ② 而过 故 ∵ ③ 由①②③得 a=2,b=-4,c=5 ∴ (2) 当 又在[-3,1]上最大值是13。 (3)y=f(x)在[-2,1]上单调递增,又由①知2a+b=0。 依题意在[-2,1]上恒有≥0,即 ①当; ②当; ③当 综上所述,参数b的取值范围是 2.已知三次函数在和时取极值,且. (1) 求函数的表达式; (2) 求函数的单调区间和极值; (3) 若函数在区间上的值域为,试求、应满足的条件. 解:(1) , 由题意得,是的两个根,解得,. 再由可得.∴. (2) , 当时,;当时,; 当时,;当时,; 当时,.∴函数在区间上是增函数; 在区间上是减函数;在区间上是增函数. 函数的极大值是,极小值是. (3) 函数的图象是由的图象向右平移个单位,向上平移4个单位得到的, 所以,函数在区间上的值域为(). 而,∴,即. 于是,函数在区间上的值域为. 令得或.由的单调性知,,即. 综上所述,、应满足的条件是:,且. 3.设函数. (1)若的图象与直线相切,切点横坐标为2,且在处取极值,求实数 的值; (2)当b=1时,试证明:不论a取何实数,函数总有两个不同的极值点. 解:(1) 由题意,代入上式,解之得:a=1,b=1.   (2)当b=1时,        因故方程有两个不同实根.   不妨设,由可判断的符号如下: 当>0;当<0;当>0 因此是极大值点,是极小值点.,当b=1时,不论a取何实数,函数总有两个不同的极值点。 题型四:利用导数研究函数的图象 1.如右图:是f(x)的导函数, 的图象如右图所示,则f(x)的图象只可能是( D ) (A) (B) (C) (D) 2.函数( A ) x y o 4 -4 2 4 -4 2 -2 -2 x y o 4 -4 2 4 -4 2 -2 -2 x y y 4 o -4 2 4 -4 2 -2 -2 6 6 6 6 y x -4 -2 o 4 2 2 4 3.方程 ( B ) A、0 B、1 C、2 D、3 题型五:利用单调性、极值、最值情况,求参数取值范围 1.设函数 (1)求函数的单调区间、极值. (2)若当时,恒有,试确定a的取值范围. 解:(1)=,令得 列表如下: x (-∞,a) a (a,3a) 3a (3a,+∞) - 0 + 0 - 极小 极大 ∴在(a,3a)上单调递增,在(-∞,a)和(3a,+∞)上单调递减 时,,时, (2)∵,∴对称轴, ∴在[a+1,a+2]上单调递减 ∴, 依题, 即 解得,又 ∴a的取值范围是 2.已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值(1)求a、b的值与函数f(x)的单调区间 (2)若对xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范围。 解:(1)f(x)=x3+ax2+bx+c,f¢(x)=3x2+2ax+b 由f¢()=,f¢(1)=3+2a+b=0得a=,b=-2 f¢(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表: x (-¥,-) - (-,1) 1 (1,+¥) f¢(x) + 0 - 0 + f(x) ­ 极大值 ¯ 极小值 ­ 所以函数f(x)的递增区间是(-¥,-)与(1,+¥),递减区间是(-,1) (2)f(x)=x3-x2-2x+c,xÎ〔-1,2〕,当x=-时,f(x)=+c 为极大值,而f(2)=2+c,则f(2)=2+c为最大值。 要使f(x)<c2(xÎ〔-1,2〕)恒成立,只需c2>f(2)=2+c,解得c<-1或c>2 题型六:利用导数研究方程的根 1.已知平面向量=(,-1). =(,). (1)若存在不同时为零的实数k和t,使=+(t2-3),=-k+t,⊥, 试求函数关系式k=f(t) ; (2) 据(1)的结论,讨论关于t的方程f(t)-k=0的解的情况. 解:(1)∵⊥,∴=0 即[+(t2-3) ]·(-k+t)=0. 整理后得-k+[t-k(t2-3)] + (t2-3)·=0 ∵=0,=4,=1,∴上式化为-4k+t(t2-3)=0,即k=t(t2-3) (2)讨论方程t(t2-3)-k=0的解的情况,可以看作曲线f(t)= t(t2-3)与直线y=k的交点个数. 于是f′(t)= (t2-1)= (t+1)(t-1). 令f′(t)=0,解得t1=-1,t2=1.当t变化时,f′(t)、f(t)的变化情况如下表: t (-∞,-1) -1 (-1,1) 1 (1,+ ∞) f′(t) + 0 - 0 + F(t) ↗ 极大值 ↘ 极小值 ↗ 当t=-1时,f(t)有极大值,f(t)极大值=. 当t=1时,f(t)有极小值,f(t)极小值=- 函数f(t)=t(t2-3)的图象如图13-2-1所示, 可观察出: (1)当k>或k<-时,方程f(t)-k=0有且只有一解; (2)当k=或k=-时,方程f(t)-k=0有两解; (3) 当-<k<时,方程f(t)-k=0有三解. 题型七:导数与不等式的综合  1.设在上是单调函数. (1)求实数的取值范围; (2)设≥1,≥1,且,求证:. 解:(1) 若在上是单调递减函数,则须这样的实数a不存在.故在上不可能是单调递减函数. 若在上是单调递增函数,则≤, 由于.从而0<a≤3. (2)方法1、可知在上只能为单调增函数. 若1≤,则 若1≤矛盾,故只有成立. 方法2:设,两式相减得 ≥1,u≥1, , 2.已知为实数,函数 (1)若函数的图象上有与轴平行的切线,求的取值范围 (2)若,(Ⅰ)求函数的单调区间 (Ⅱ)证明对任意的,不等式恒成立 解:, 函数的图象有与轴平行的切线,有实数解 ,,所以的取值范围是 ,,, 由或;由 的单调递增区间是;单调减区间为 易知的最大值为,的极小值为,又 在上的最大值,最小值 对任意,恒有 题型八:导数在实际中的应用 1.请您设计一个帐篷。它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如右图所示)。试问当帐篷的顶点O到底面中心的距离为多少时,帐篷的体积最大? 解:设OO1为,则 由题设可得正六棱锥底面边长为:,(单位:) 故底面正六边形的面积为:=,(单位:) 帐篷的体积为:(单位:) 求导得。 令,解得(不合题意,舍去),, 当时,,为增函数; 当时,,为减函数。 ∴当时,最大。 答:当OO1为时,帐篷的体积最大,最大体积为。 2.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为: 已知甲、乙两地相距100千米。 (I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (II)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升? 解:(I)当时,汽车从甲地到乙地行驶了小时, 要耗没(升)。 (II)当速度为千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为升, 依题意得 令得 当时,是减函数; 当时,是增函数。 当时,取到极小值 因为在上只有一个极值,所以它是最小值。 答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升。 题型九:导数与向量的结合 1.设平面向量若存在不同时为零的两个实数s、t及实数k,使 (1)求函数关系式; (2)若函数在上是单调函数,求k的取值范围。 解:(1) (2) 则在上有 由; 由。 因为在t∈上是增函数,所以不存在k,使在上恒成立。故k的取值范围是。 导数题型分析及解题方法 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 在区间上的最大值是 2 2.已知函数处有极大值,则常数c= 6 ; 3.函数有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程 1.曲线在点处的切线方程是 2.若曲线在P点处的切线平行于直线,则P点的坐标为 (1,0) 3.若曲线的一条切线与直线垂直,则的方程为 4.求下列直线的方程: (1)曲线在P(-1,1)处的切线; (2)曲线过点P(3,5)的切线; 解:(1) 所以切线方程为 (2)显然点P(3,5)不在曲线上,所以可设切点为,则①又函数的导数为, 所以过点的切线的斜率为,又切线过、P(3,5)点,所以有②,由①②联立方程组得,,即切点为(1,1)时,切线斜率为;当切点为(5,25)时,切线斜率为;所以所求的切线有两条,方程分别为 题型三:利用导数研究函数的单调性,极值、最值 1.已知函数的切线方程为y=3x+1 (Ⅰ)若函数处有极值,求的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数在[-3,1]上的最大值; (Ⅲ)若函数在区间[-2,1]上单调递增,求实数b的取值范围 解:(1)由 过的切线方程为: ① ② 而过 故 ∵ ③ 由①②③得 a=2,b=-4,c=5 ∴ (2) 当 又在[-3,1]上最大值是13。 (3)y=f(x)在[-2,1]上单调递增,又由①知2a+b=0。 依题意在[-2,1]上恒有≥0,即 ①当; ②当; ③当 综上所述,参数b的取值范围是 2.已知三次函数在和时取极值,且. (1) 求函数的表达式; (2) 求函数的单调区间和极值; (3) 若函数在区间上的值域为,试求、应满足的条件. 解:(1) , 由题意得,是的两个根,解得,. 再由可得.∴. (2) , 当时,;当时,; 当时,;当时,; 当时,.∴函数在区间上是增函数; 在区间上是减函数;在区间上是增函数. 函数的极大值是,极小值是. (3) 函数的图象是由的图象向右平移个单位,向上平移4个单位得到的, 所以,函数在区间上的值域为(). 而,∴,即. 于是,函数在区间上的值域为. 令得或.由的单调性知,,即. 综上所述,、应满足的条件是:,且. 3.设函数. (1)若的图象与直线相切,切点横坐标为2,且在处取极值,求实数 的值; (2)当b=1时,试证明:不论a取何实数,函数总有两个不同的极值点. 解:(1) 由题意,代入上式,解之得:a=1,b=1.   (2)当b=1时,        因故方程有两个不同实根.   不妨设,由可判断的符号如下: 当>0;当<0;当>0 因此是极大值点,是极小值点.,当b=1时,不论a取何实数,函数总有两个不同的极值点。 题型四:利用导数研究函数的图象 1.如右图:是f(x)的导函数, 的图象如右图所示,则f(x)的图象只可能是( D ) (A) (B) (C) (D) 2.函数( A ) x y o 4 -4 2 4 -4 2 -2 -2 x y o 4 -4 2 4 -4 2 -2 -2 x y y 4 o -4 2 4 -4 2 -2 -2 6 6 6 6 y x -4 -2 o 4 2 2 4 3.方程 ( B ) A、0 B、1 C、2 D、3 题型五:利用单调性、极值、最值情况,求参数取值范围 1.设函数 (1)求函数的单调区间、极值. (2)若当时,恒有,试确定a的取值范围. 解:(1)=,令得 列表如下: x (-∞,a) a (a,3a) 3a (3a,+∞) - 0 + 0 - 极小 极大 ∴在(a,3a)上单调递增,在(-∞,a)和(3a,+∞)上单调递减 时,,时, (2)∵,∴对称轴, ∴在[a+1,a+2]上单调递减 ∴, 依题, 即 解得,又 ∴a的取值范围是 2.已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值(1)求a、b的值与函数f(x)的单调区间 (2)若对xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范围。 解:(1)f(x)=x3+ax2+bx+c,f¢(x)=3x2+2ax+b 由f¢()=,f¢(1)=3+2a+b=0得a=,b=-2 f¢(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表: x (-¥,-) - (-,1) 1 (1,+¥) f¢(x) + 0 - 0 + f(x) ­ 极大值 ¯ 极小值 ­ 所以函数f(x)的递增区间是(-¥,-)与(1,+¥),递减区间是(-,1) (2)f(x)=x3-x2-2x+c,xÎ〔-1,2〕,当x=-时,f(x)=+c 为极大值,而f(2)=2+c,则f(2)=2+c为最大值。 要使f(x)<c2(xÎ〔-1,2〕)恒成立,只需c2>f(2)=2+c,解得c<-1或c>2 题型六:利用导数研究方程的根 1.已知平面向量=(,-1). =(,). (1)若存在不同时为零的实数k和t,使=+(t2-3),=-k+t,⊥, 试求函数关系式k=f(t) ; (2) 据(1)的结论,讨论关于t的方程f(t)-k=0的解的情况. 解:(1)∵⊥,∴=0 即[+(t2-3) ]·(-k+t)=0. 整理后得-k+[t-k(t2-3)] + (t2-3)·=0 ∵=0,=4,=1,∴上式化为-4k+t(t2-3)=0,即k=t(t2-3) (2)讨论方程t(t2-3)-k=0的解的情况,可以看作曲线f(t)= t(t2-3)与直线y=k的交点个数. 于是f′(t)= (t2-1)= (t+1)(t-1). 令f′(t)=0,解得t1=-1,t2=1.当t变化时,f′(t)、f(t)的变化情况如下表: t (-∞,-1) -1 (-1,1) 1 (1,+ ∞) f′(t) + 0 - 0 + F(t) ↗ 极大值 ↘ 极小值 ↗ 当t=-1时,f(t)有极大值,f(t)极大值=. 当t=1时,f(t)有极小值,f(t)极小值=- 函数f(t)=t(t2-3)的图象如图13-2-1所示, 可观察出: (1)当k>或k<-时,方程f(t)-k=0有且只有一解; (2)当k=或k=-时,方程f(t)-k=0有两解; (3) 当-<k<时,方程f(t)-k=0有三解. 题型七:导数与不等式的综合  1.设在上是单调函数. (1)求实数的取值范围; (2)设≥1,≥1,且,求证:. 解:(1) 若在上是单调递减函数,则须这样的实数a不存在.故在上不可能是单调递减函数. 若在上是单调递增函数,则≤, 由于.从而0<a≤3. (2)方法1、可知在上只能为单调增函数. 若1≤,则 若1≤矛盾,故只有成立. 方法2:设,两式相减得 ≥1,u≥1, , 2.已知为实数,函数 (1)若函数的图象上有与轴平行的切线,求的取值范围 (2)若,(Ⅰ)求函数的单调区间 (Ⅱ)证明对任意的,不等式恒成立 解:, 函数的图象有与轴平行的切线,有实数解 ,,所以的取值范围是 ,,, 由或;由 的单调递增区间是;单调减区间为 易知的最大值为,的极小值为,又 在上的最大值,最小值 对任意,恒有 题型八:导数在实际中的应用 1.请您设计一个帐篷。它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如右图所示)。试问当帐篷的顶点O到底面中心的距离为多少时,帐篷的体积最大? 解:设OO1为,则 由题设可得正六棱锥底面边长为:,(单位:) 故底面正六边形的面积为:=,(单位:) 帐篷的体积为:(单位:) 求导得。 令,解得(不合题意,舍去),, 当时,,为增函数; 当时,,为减函数。 ∴当时,最大。 答:当OO1为时,帐篷的体积最大,最大体积为。 2.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为: 已知甲、乙两地相距100千米。 (I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (II)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升? 解:(I)当时,汽车从甲地到乙地行驶了小时, 要耗没(升)。 (II)当速度为千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为升, 依题意得 令得 当时,是减函数; 当时,是增函数。 当时,取到极小值 因为在上只有一个极值,所以它是最小值。 答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升。 题型九:导数与向量的结合 1.设平面向量若存在不同时为零的两个实数s、t及实数k,使 (1)求函数关系式; (2)若函数在上是单调函数,求k的取值范围。 解:(1) (2) 则在上有 由; 由。 因为在t∈上是增函数,所以不存在k,使在上恒成立。故k的取值范围是。 导数题型分析及解题方法 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 在区间上的最大值是 2 2.已知函数处有极大值,则常数c= 6 ; 3.函数有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程 1.曲线在点处的切线方程是 2.若曲线在P点处的切线平行于直线,则P点的坐标为 (1,0) 3.若曲线的一条切线与直线垂直,则的方程为 4.求下列直线的方程: (1)曲线在P(-1,1)处的切线; (2)曲线过点P(3,5)的切线; 解:(1) 所以切线方程为 (2)显然点P(3,5)不在曲线上,所以可设切点为,则①又函数的导数为, 所以过点的切线的斜率为,又切线过、P(3,5)点,所以有②,由①②联立方程组得,,即切点为(1,1)时,切线斜率为;当切点为(5,25)时,切线斜率为;所以所求的切线有两条,方程分别为 题型三:利用导数研究函数的单调性,极值、最值 1.已知函数的切线方程为y=3x+1 (Ⅰ)若函数处有极值,求的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数在[-3,1]上的最大值; (Ⅲ)若函数在区间[-2,1]上单调递增,求实数b的取值范围 解:(1)由 过的切线方程为: ① ② 而过 故 ∵ ③ 由①②③得 a=2,b=-4,c=5 ∴ (2) 当 又在[-3,1]上最大值是13。 (3)y=f(x)在[-2,1]上单调递增,又由①知2a+b=0。 依题意在[-2,1]上恒有≥0,即 ①当; ②当; ③当 综上所述,参数b的取值范围是 2.已知三次函数在和时取极值,且. (1) 求函数的表达式; (2) 求函数的单调区间和极值; (3) 若函数在区间上的值域为,试求、应满足的条件. 解:(1) , 由题意得,是的两个根,解得,. 再由可得.∴. (2) , 当时,;当时,; 当时,;当时,; 当时,.∴函数在区间上是增函数; 在区间上是减函数;在区间上是增函数. 函数的极大值是,极小值是. (3) 函数的图象是由的图象向右平移个单位,向上平移4个单位得到的, 所以,函数在区间上的值域为(). 而,∴,即. 于是,函数在区间上的值域为. 令得或.由的单调性知,,即. 综上所述,、应满足的条件是:,且. 3.设函数. (1)若的图象与直线相切,切点横坐标为2,且在处取极值,求实数 的值; (2)当b=1时,试证明:不论a取何实数,函数总有两个不同的极值点. 解:(1) 由题意,代入上式,解之得:a=1,b=1.   (2)当b=1时,        因故方程有两个不同实根.   不妨设,由可判断的符号如下: 当>0;当<0;当>0 因此是极大值点,是极小值点.,当b=1时,不论a取何实数,函数总有两个不同的极值点。 题型四:利用导数研究函数的图象 1.如右图:是f(x)的导函数, 的图象如右图所示,则f(x)的图象只可能是( D ) (A) (B) (C) (D) 2.函数( A ) x y o 4 -4 2 4 -4 2 -2 -2 x y o 4 -4 2 4 -4 2 -2 -2 x y y 4 o -4 2 4 -4 2 -2 -2 6 6 6 6 y x -4 -2 o 4 2 2 4 3.方程 ( B ) A、0 B、1 C、2 D、3 题型五:利用单调性、极值、最值情况,求参数取值范围 1.设函数 (1)求函数的单调区间、极值. (2)若当时,恒有,试确定a的取值范围. 解:(1)=,令得 列表如下: x (-∞,a) a (a,3a) 3a (3a,+∞) - 0 + 0 - 极小 极大 ∴在(a,3a)上单调递增,在(-∞,a)和(3a,+∞)上单调递减 时,,时, (2)∵,∴对称轴, ∴在[a+1,a+2]上单调递减 ∴, 依题, 即 解得,又 ∴a的取值范围是 2.已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值(1)求a、b的值与函数f(x)的单调区间 (2)若对xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范围。 解:(1)f(x)=x3+ax2+bx+c,f¢(x)=3x2+2ax+b 由f¢()=,f¢(1)=3+2a+b=0得a=,b=-2 f¢(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表: x (-¥,-) - (-,1) 1 (1,+¥) f¢(x) + 0 - 0 + f(x) ­ 极大值 ¯ 极小值 ­ 所以函数f(x)的递增区间是(-¥,-)与(1,+¥),递减区间是(-,1) (2)f(x)=x3-x2-2x+c,xÎ〔-1,2〕,当x=-时,f(x)=+c 为极大值,而f(2)=2+c,则f(2)=2+c为最大值。 要使f(x)<c2(xÎ〔-1,2〕)恒成立,只需c2>f(2)=2+c,解得c<-1或c>2 题型六:利用导数研究方程的根 1.已知平面向量=(,-1). =(,). (1)若存在不同时为零的实数k和t,使=+(t2-3),=-k+t,⊥, 试求函数关系式k=f(t) ; (2) 据(1)的结论,讨论关于t的方程f(t)-k=0的解的情况. 解:(1)∵⊥,∴=0 即[+(t2-3) ]·(-k+t)=0. 整理后得-k+[t-k(t2-3)] + (t2-3)·=0 ∵=0,=4,=1,∴上式化为-4k+t(t2-3)=0,即k=t(t2-3) (2)讨论方程t(t2-3)-k=0的解的情况,可以看作曲线f(t)= t(t2-3)与直线y=k的交点个数. 于是f′(t)= (t2-1)= (t+1)(t-1). 令f′(t)=0,解得t1=-1,t2=1.当t变化时,f′(t)、f(t)的变化情况如下表: t (-∞,-1) -1 (-1,1) 1 (1,+ ∞) f′(t) + 0 - 0 + F(t) ↗ 极大值 ↘ 极小值 ↗ 当t=-1时,f(t)有极大值,f(t)极大值=. 当t=1时,f(t)有极小值,f(t)极小值=- 函数f(t)=t(t2-3)的图象如图13-2-1所示, 可观察出: (1)当k>或k<-时,方程f(t)-k=0有且只有一解; (2)当k=或k=-时,方程f(t)-k=0有两解; (3) 当-<k<时,方程f(t)-k=0有三解. 题型七:导数与不等式的综合  1.设在上是单调函数. (1)求实数的取值范围; (2)设≥1,≥1,且,求证:. 解:(1) 若在上是单调递减函数,则须这样的实数a不存在.故在上不可能是单调递减函数. 若在上是单调递增函数,则≤, 由于.从而0<a≤3. (2)方法1、可知在上只能为单调增函数. 若1≤,则 若1≤矛盾,故只有成立. 方法2:设,两式相减得 ≥1,u≥1, , 2.已知为实数,函数 (1)若函数的图象上有与轴平行的切线,求的取值范围 (2)若,(Ⅰ)求函数的单调区间 (Ⅱ)证明对任意的,不等式恒成立 解:, 函数的图象有与轴平行的切线,有实数解 ,,所以的取值范围是 ,,, 由或;由 的单调递增区间是;单调减区间为 易知的最大值为,的极小值为,又 在上的最大值,最小值 对任意,恒有 题型八:导数在实际中的应用 1.请您设计一个帐篷。它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如右图所示)。试问当帐篷的顶点O到底面中心的距离为多少时,帐篷的体积最大? 解:设OO1为,则 由题设可得正六棱锥底面边长为:,(单位:) 故底面正六边形的面积为:=,(单位:) 帐篷的体积为:(单位:) 求导得。 令,解得(不合题意,舍去),, 当时,,为增函数; 当时,,为减函数。 ∴当时,最大。 答:当OO1为时,帐篷的体积最大,最大体积为。 2.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为: 已知甲、乙两地相距100千米。 (I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (II)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升? 解:(I)当时,汽车从甲地到乙地行驶了小时, 要耗没(升)。 (II)当速度为千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为升, 依题意得 令得 当时,是减函数; 当时,是增函数。 当时,取到极小值 因为在上只有一个极值,所以它是最小值。 答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升。 题型九:导数与向量的结合 1.设平面向量若存在不同时为零的两个实数s、t及实数k,使 (1)求函数关系式; (2)若函数在上是单调函数,求k的取值范围。 解:(1) (2) 则在上有 由; 由。 因为在t∈上是增函数,所以不存在k,使在上恒成立。故k的取值范围是。 导数题型分析及解题方法 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 在区间上的最大值是 2 2.已知函数处有极大值,则常数c= 6 ; 3.函数有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程 1.曲线在点处的切线方程是 2.若曲线在P点处的切线平行于直线,则P点的坐标为 (1,0) 3.若曲线的一条切线与直线垂直,则的方程为 4.求下列直线的方程: (1)曲线在P(-1,1)处的切线; (2)曲线过点P(3,5)的切线; 解:(1) 所以切线方程为 (2)显然点P(3,5)不在曲线上,所以可设切点为,则①又函数的导数为, 所以过点的切线的斜率为,又切线过、P(3,5)点,所以有②,由①②联立方程组得,,即切点为(1,1)时,切线斜率为;当切点为(5,25)时,切线斜率为;所以所求的切线有两条,方程分别为 题型三:利用导数研究函数的单调性,极值、最值 1.已知函数的切线方程为y=3x+1 (Ⅰ)若函数处有极值,求的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数在[-3,1]上的最大值; (Ⅲ)若函数在区间[-2,1]上单调递增,求实数b的取值范围 解:(1)由 过的切线方程为: ① ② 而过 故 ∵ ③ 由①②③得 a=2,b=-4,c=5 ∴ (2) 当 又在[-3,1]上最大值是13。 (3)y=f(x)在[-2,1]上单调递增,又由①知2a+b=0。 依题意在[-2,1]上恒有≥0,即 ①当; ②当; ③当 综上所述,参数b的取值范围是 2.已知三次函数在和时取极值,且. (1) 求函数的表达式; (2) 求函数的单调区间和极值; (3) 若函数在区间上的值域为,试求、应满足的条件. 解:(1) , 由题意得,是的两个根,解得,. 再由可得.∴. (2) , 当时,;当时,; 当时,;当时,; 当时,.∴函数在区间上是增函数; 在区间上是减函数;在区间上是增函数. 函数的极大值是,极小值是. (3) 函数的图象是由的图象向右平移个单位,向上平移4个单位得到的, 所以,函数在区间上的值域为(). 而,∴,即. 于是,函数在区间上的值域为
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服