收藏 分销(赏)

图形中的规律课件.pptx

上传人:人****来 文档编号:10285285 上传时间:2025-05-15 格式:PPTX 页数:46 大小:516.10KB
下载 相关 举报
图形中的规律课件.pptx_第1页
第1页 / 共46页
图形中的规律课件.pptx_第2页
第2页 / 共46页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,三角形个数,小棒的根数,1,2,3,4,10,1,3=3,2,3=6,3,3=9,4,3=12,10,3=30,n,n,3=,单个摆三角形,3,n,1,求,n,个单独的三角形的小棒数(边数)我们可以用这样公式来概括这种规律:,3,代表组成一个单独三角形所需的小棒数(边数),3,n,n,代表图形(三角形)的个数,n,3=,2,单个摆三角形,复合三角形,3,三角形个数,摆成的图形,小棒的根数,1,2,3,4,10,3,5,7,9,每多摆,1,个三角形就增加,2,根小棒。,=3+,2,=3+,2,+,2,=3+,2,+,2,+,2,21,?,4,3,+,2,(,10,-1,),=,21,(根),(,10,个),3+,2,+,2,+,2,+,2,+,2,+,2,+,2,+,2,+,2,=,21,(根),3,+,2,(,n,-1,),3+2(n-1),n,5,三角形个数,摆成的图形,小棒的根数,1,2,3,4,10,3,5,7,9,=1+,2,+,2,=1+,2,+,2+2,=1+,2,+,2,+,2+2,21,?,=1+,2,6,大家有疑问的,可以询问和交流,可以互相讨论下,但要小声点,7,(,10,个),1 +2,10,=21,(根),1 +2,n,1+2n,或,2n+1,n,1+,2,+,2,+,2,+,2,+,2,+,2,+,2,+,2,+,2,+,2,=21,(根),8,3,10,(,10,-,1,)=21,(根),(,10,个),3,n,(,n,-,1,),3n-(n-1),n,9,方法一:,写一写,方法二:,方法三:,3+2(n-1),1+2n,或,2n+1,3n-(n-1),1+2n,或,2n+1,10,摆,100,个三角形需要多少根小棒呢?,11,摆正方形会有什么规律呢?,12,正方形个数,摆成的图形,小棒的根数,1,2,3,4,10,4,7,10,13,每多摆,1,个正方形就增加,3,根小棒。,13,4+3,19,摆,20,个正方形需要多少根小棒?,1+3,20,4,20,19,4+2(n-1),4n-(n-1),1+3n,或,3n+1,14,如果边数继续增加,五边形象这样摆下去,你们还能说出这里的规律么?六边形呢?,1+4n,五边形,六边形,1+5n,七边形,6n+1,八边形,7n+1,15,16,古希腊数学家,毕达哥拉斯,阿拉伯数字的发明,使我们记录和计算更加方便,然而在表现一些数的特征方面,点阵更加直观。,2300,多年前,古希腊数学家毕达哥拉斯就非常善于寻找点阵中的规律,用点阵来研究数。,17,25,第五个点阵有多少个点?画出此图形。,55=25,你有什么发现呢?,18,1,4,9,16,这些点阵图与对应的数有什么关系?和序号呢?,点阵,数,序号,3,2,1,4,5,25,19,25,能用数学算式表示,25,吗?,20,序号,点阵中的规律,数,形(点阵),1,4,9,16,25,数形结合,横竖看,11=1,22=4,33=9,44=16,55=25,斜着看,1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,1+2+3+4+5+4+3+2+1,拐弯看,1+3=4,1+3+5=9,1+3+5+7=16,1+3+5+7+9=25,1,思考:这些算式与序号有什么关系?,21,交流你的发现吧!,斜着观察发现,划分的,9,个图形,随着图形的变化,图中的点数也发生变化。左上图形点的个数是以第一个图形的点开始,从第二个图形往后依次增加,1,点,第五个图形为,5,点,从第五个图形向右下又依次减少一个点,到一点,即,1+2+3+4+5+4+3+2+1=5,5=25,。,规律:,1+2+3+4+N+4+3+2+1=N,N,22,利用你的发现,计算一下:,1,2,3,99,100,99,3,2,1,?,100100=10000,23,交流你的发现吧!,拐弯,观察发现,划分的五个图形均是正方形(第一个图形除外),前后图形点的个数是以第一个图形的点开始,第二个图形比第一个图形增加点,第三个图形比第二个图形增加点,第四个图形比第三个图形增加点,第五个图形比第四个图形增加点,即,+,+,+,+9,.,规律:连续奇数的和,24,数缺形来少直观,,形缺数来难入微,,数形结合百般好,,隔离分家万事休。,中国现代著名数学家华 罗 庚,25,试,一,试,观察下列点阵,并在括号中填上适当的算式。,(,12,),(),(),(),试着画出第,5,个点阵图。,23,34,45,26,5,6,27,观察点阵的规律,画出下一个图形。,?,试,一,试,28,=1,1+2 =3,1+2+=,=,你有什么发现?,试,一,试,3,6,1+2+3+4,10,29,练一练,按下面的方法划分点阵中的点,并填写算式。,1=1,4=1+2+1,9=,16=,1+2+3+2+1,1+2+3+4+3+2+1,30,1+2+3,2+3+4,3+4+5,4+,第,7,个点阵有,个点,观察图中,找一找有什么规律。,24,5,6,练一练,31,观察下图中已有的几个图形,按规律画出下一个图形。,?,试,一,试,32,如图:正五边形点阵,它的中心是一个点,算做第一层,第二层每边有两个点,第三层每边有三个点。这个五边形点阵第,12,层有多少个点?,33,如图所示,在正六边形周围画出,6,个同样的正六边形,(,阴影部分,),围成第,1,圈,;,在第,1,圈外面再画出,12,个同样的正六边形,围成第,2,圈,;,。按这个方法继续画下去,当画完第,6,圈时,图中共有,_,个这样的正六边形。,34,如图,:,每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用等式表示第个正方形点阵中的规律是,。,10,1,35,有一张蓝白相间的方格纸,用记号,(3,2),表示从,左,往,右,数,第,3,列,从,上,往,下,数第,2,行,的这一格,(,如图,),那么,(19,81),这,一格是,_,色。,3,2,36,根据左图的变化,推断出右图右边问号处应选几号图?,37,根据左图的变化,推断出右图右边问号处应选几号图?,38,根据前面三幅图的规律,在第四幅图中画出阴影部分。,39,根据前面三幅图的规律,在第四幅图中画出阴影部分。,40,点击出迷宫,如图,照这样摆下去,若摆到第,1,层,一共需个正方体,其中 有 个,有 个,若摆,80,层,一共需 个正,方体,其中 有 个,有 个。,100,55,45,11,22,33,44,nn,一层,二层,三层,四层,n,层,6400,3240,3160,41,问题解决,1,2,4,3,1,3,15,7,1,4,13,42,问题解决,1,2,4,3,1,3,15,7,1,4,13,40,43,观察鱼的排列规律,在“?”处画上鱼图。,?,44,?,请从下面六个图中,选一个合适的填在“,?,”处。,45,说说这节课你的收获和疑惑吧!,46,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服