收藏 分销(赏)

抛物线集合性质资料讲解.ppt

上传人:天**** 文档编号:10279700 上传时间:2025-05-13 格式:PPT 页数:34 大小:399.01KB 下载积分:12 金币
下载 相关 举报
抛物线集合性质资料讲解.ppt_第1页
第1页 / 共34页
抛物线集合性质资料讲解.ppt_第2页
第2页 / 共34页


点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,抛物线的简单几何性质(一),Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,M,是抛物线,y,2,=,2,px,(,p,0)上一点,若点,M,的横坐标为,x,0,,则点,M,到焦点的距离是,x,0,+,2,p,O,y,x,F,M,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,焦半径及焦半径公式,抛物线上一点到焦点的距离,P(x,0,,y,0,)在y,2,=2px上,,P(x,0,,y,0,)在y,2,=-2px上,P(x,0,,y,0,)在x,2,=2py上,P(x,0,,y,0,)在x,2,=-2py上,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,1、抛物线的范围:y,2,=2px,y取全体实数,x,y,X,0,抛物线的几何性质:,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,2、抛物线的对称性 y,2,=2px,关于,x,轴对称,没有对称中心,因此,抛物线又叫做无心圆锥曲线。而椭圆和双曲线又叫做有心圆锥曲线,X,Y,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,定义:抛物线与对称轴的交点,叫做抛物线的顶点,只有一个顶点,X,Y,3、抛物线的顶点 y,2,=2px,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,所有的抛物线的离心率都是 1,X,Y,4、抛物线的离心率 y,2,=2px,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,基本点:顶点,焦点,基本线:准线,对称轴,基本量:焦准距,p,(决定抛物线开口大小),X,Y,5、抛物线的基本元素 y,2,=2px,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,例1:,已知抛物线y,2,=2x,(1)设点A的坐标为(,0),求曲,线上与点A距离最近的点P的坐标及相应的|PA|的值;,(2)若上题中A(2,0),则结果如何?,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,例2:,斜率为1的直线经过抛物线y,2,=4x 的焦点,与抛物线相交于两点A、B,求线段AB的长.,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,6、焦点弦和通径,通径是焦点弦中最短的弦,,通径|AB|=2p,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,设AB是抛物线y,2,=2px(p0)过焦点F,的一条弦。设A(x,1,y,1,),B(x,2,y,2,),AB的,中点M(x,0,y,0,),过A,B,M分别向抛物线,的准线作垂线,垂足为A,1,B,1,M,1,则,y,F,A(x,1,y,1,),O,B(x,2,y,2,),M,A,1,B,1,M,1,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,A(x,1,y,1,),(1)|AB|x,1,+x,2,+p,(2)x,1,x,2,=,y,1,y,2,=-p,2,X,y,F,O,B(x,2,y,2,),M,A,1,B,1,M,1,y,2,=2px(p0),Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,y,F,A(x,1,y,1,),O,B(x,2,y,2,),M,A,1,B,1,M,1,(5)证明:以AB为直径的圆与准线相切,y,2,=2px(p0),AM,1,B=Rt,A,1,FB,1,=Rt,N,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,练习1:,已知抛物线方程为,y,2,=4,x,,直线,l,过定点P(,-,2,1),斜率为k.则k为何值时,直线,l,与抛物线,y,2,=4,x,只有一个公共点;有两个公共点;没有公共点呢。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,提出问题,过抛物线 的焦点的一条直线和抛物线相交,两交点的纵坐标为 ,,求证:.(焦点弦的其中,一条性质),Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,探究1,过焦点的直线具有上述性质,反之,若直线,AB,与抛物线 的两个交点,A,,,B,的纵坐标为 ,且 ,那么直线,AB,是否经过焦点,F,呢?,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,探究2,既然过抛物线焦点的直线与其相交,交点的纵坐标的乘积是一个定值,那么过抛物线对称轴上其他任意一定点,是否也有这个性质呢?,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,探究3,设抛物线 上两动点,,且满足,,问,AB,是否恒过某一定点?,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,探究4,设抛物线 上两动点,,且满足,,,求,AB,中点,P,的轨迹方程.,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,探究5,设抛物线 上两动点,,,O,为坐标原点,,OA,OB,,则直线,AB,是否过定点?,求,AB,中点,P,的轨迹方程,.,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,探究6,设抛物线 上两动点,,,M,为该抛物线上一定点,且,MA,MB,,则直线,AB,是否过定点?,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,探究7,若,M,为抛物线 上一个定点,,A,、,B,是抛物线上的两个动点,且,(,r,为非零常数,),,求证:直线,AB,过定点。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,将,“,探究,6,”,的,“,直线,MA,与直线,MB,的倾斜角之差为,90,0,”,变为,“,直线,MA,与直线,MB,的倾斜角之和为,90,0,”,,即 ,,r,=1,直线,AB,过定点.,将,“,探究,6,”,的,“,直线,MA,与直线,MB,的倾斜角之差为,90,0,”,变为,“,直线,MA,与直线,MB,的倾斜角之和为,180,0,”,,直线,AB,不过定点,但可得到:,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,探究8,若,M,为抛物线 上一个定点,,A,、,B,是抛物线上的两个动点,且直线,MA,与直线,MB,的倾斜角互补,求证:直线,AB,的斜率为定值。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,设计意图:,培养学生研究数学问题的一般思想方法,一是考虑原命题的逆命题是否成立;二是考虑能否把原命题进行一般推广;三是考虑从原命题条件中还能推出什么结论?四是考虑把原命题进行适当变式进行拓展。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,问题,(2004年北京卷理),过抛物线 上一定点,,作两条直线分别交抛物线于 .当,PA,与,PB,的斜率存在且倾斜角互补时,求 的值,并证明直线,AB,的斜,率为非零常数.,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,变式1,过抛物线 上一定点 ,作两条直线分别交抛物线于 ,若直线,AB,的斜率为定值 ,证明直线,PA,与,PB,的倾斜角互补.,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,设动直线,AB,:,y,=,-,x,+,b,与抛物线,相交于两点 ,问在直线,MN,:,x,=2,上能否找到一定点,P,(坐标与,b,的值无关),使得直线,PA,与,PB,的倾斜角互补?,变式2,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,变式3,如图,抛物线 ,,过点,P,(1,0),作斜率为,k,的直线,l,交抛物线于,A,、,B,两点,,A,关于,x,轴的对称点为,C,,直线,BC,交,x,轴于,Q,点,当,k,变化时,探究点,Q,是否为定点?,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,练习1:,如图,定长为3的线段AB的两端点在抛物线,y,2,=,x,上移动,设线段AB的中点为M,求点M到y轴的最短距离。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,练习2:,正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y,2,=2px(p0)上,求这个三角形的边长。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,变式:,已知在抛物线y=x,2,上三个点A、B、C组成一个等腰直角三角形,且顶点B是直角顶点,,(1)设直线BC的斜率为,k,,求顶点B的坐标;,(2)求等腰直角三角形的面积的最小值。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,抛物线的对称性问题,例.已知直线过原点,抛物线的顶点在原点,焦点在,x,轴的正半轴上,且点A(,-,1,0)和B(0,8)关于直线的对称点都在抛物线上,求直线和抛物线的方程。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服