收藏 分销(赏)

图像基本运算.ppt

上传人:w****g 文档编号:10277509 上传时间:2025-05-12 格式:PPT 页数:94 大小:8.07MB
下载 相关 举报
图像基本运算.ppt_第1页
第1页 / 共94页
图像基本运算.ppt_第2页
第2页 / 共94页
点击查看更多>>
资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,建筑施工技术,*,1,(Basic Operation in Digital Image Processing),3.1,图像基本运算的概述,(Introduction),3.2,点运算,(Point Operation),3.3,代数与逻辑运算,(Algebra and Logical Operation),3.4,几何运算,(Geometric Operation),第,3,讲 图像基本运算,2,3.1,图像基本运算的概述,(Introduction),图像基本运算,点运算,(Point Operation),代数运算,(Algebra Operation),逻辑运算,(Logical Operation),几何运算,(Geometric Operation),按图像处理运算的数学特征,图像基本运算可分为:,图像基本运算的分类,3,3.1,图像基本运算的概述,(Introduction),点运算,点运算是指对一幅图像中每个像素点的灰度值进行计算的方法。,代数运算、逻辑运算,代数运算或逻辑运算是指将两幅或多幅图像通过对应像素之间的加、减、乘、除运算或逻辑与、或、非运算得到输出图像的方法。,4,3.1,图像基本运算的概述,(Introduction),几何运算,几何运算就是改变图像中物体对象(像素)之间的空间关系。,从变换性质来分,几何变换可以分为图像的位置变换(平移、镜像、旋转)、形状变换(放大、缩小)以及图像的复合变换等。,5,3.2,点运算,(Point Operation),1.,点运算的,定义,设输入图像的灰度为,f(x,y),,输出图像的灰度为,g(x,y),,,则点运算可以表示为:,其中,T,是对,f,在(,x,,,y,)点,值的一种数学运算,即点运算是一种像素的逐点运算,是灰度到灰度的映射过程,故称,T,为,灰度变换函数。,灰度变换函数,6,3.2,点运算,(Point Operation),若令,f(x,y),和,g(x,y),在任意点(,x,,,y,)的灰度级分别为,r,和,s,,则,灰度变换函数,可简化表示为:,3.1,对比度增大,255,178,48,255,0,s,r,3.2,加亮、减暗图像,255,255,0,s,r,128,218,非线性灰度变换,点运算可以改变图像数据所占据的灰度值范围,从而改善图像显示效果。,7,3.2,点运算,(Point Operation),点运算又称为“,对比度增强,”、“,对比度拉伸,”、“,灰度变换,”等,按灰度变换函数,T,的性质,可将点运算分为:,点运算,灰度变换增强,直方图增强,(,基于直方图处理的图像增强,),线性灰度变换(线性点运算),非线性灰度变换(非线性点运算),分段线性灰度变换(分段线性点运算),2.,点运算的,分类,8,3.2.1,线性点运算(,Linear Point Operation,),线性点运算的灰度变换函数形式可以采用线性方程描述,即,图,3.3,线性点运算,1,、线性点运算,黑线:,红线:,蓝线:,输出灰度压缩,输出灰度扩展,整体变亮,输出灰度不变,绿线:,输出灰度压缩,整体变暗,45,9,线性点运算的应用,1,)如果,a1,,输出图像的对比度增大(灰度扩展),3.4,对比度增大,变换前,变换后,3.2.1,线性点运算(,Linear Point Operation,),255,178,48,255,0,s,r,10,2,)如果,0a figure;imshow(K);,28,未加噪声的图像,加噪声后的图像,求平均后的图像,29,相加,3.3.1,加法运算,(Addition),Addition:,averaging for noise reduction,M=1,M=2,M=4,M=16,30,生成图象叠加效果:可以得到各种图像合成的效果,也可以用于两张图片的衔接。,3.3.1,加法运算,(Addition),31,3.3.2,减法运算,(Subtraction),减法运算,主要应用举例:,差影法,(,检测同一场景两幅图像之间的变化,),混合图像的分离,将同一景物在不同时间拍摄的图像或同一景物在不同波段的图像相减,这就是图像的减法运算。实际中常称为差影法。,差值图像提供了图像间的差值信息,能用于指导动态监测、运动目标的检测和跟踪、图像背景的消除及目标识别等。,32,检测同一场景两幅图像之间的变化,设:时刻,1,的图像为,T,1,(x,y),,,时刻,2,的图像为,T,2,(x,y),g(x,y)=T,2,(x,y)-T,1,(x,y),=,-,T,1,(x,y),T,2,(x,y),g(x,y),3.3.2,减法运算,(Subtraction),33,3.3.2,减法运算,(Subtraction),差影法在自动现场监测中的应用,1,、在银行金库内,摄像头每隔一固定时间拍摄一幅图像,并与上一幅图像做差影,如果图像差别超过了预先设置的阈值,则表明可能有异常情况发生,应自动或以某种方式报警;,4,、利用差值图像还能鉴别出耕地及不同的作物覆盖情况。,2,、用于遥感图像的动态监测,差值图像可以发现森林火灾、洪水泛滥,监测灾情变化等;,3,、也可用于监测河口、海岸的泥沙淤积及监视江河、湖泊、海岸等的污染;,34,图像相减,运动检测,35,3.3.2,减法运算,(Subtraction),图,3.6,差影法进行混合图像的分离,(,a,)混合图像,(,b,)被减图像 (,c,)差影图像,混合图像的分离,36,3.3.2,减法运算,(Subtraction),消除背景影响,设:背景图像,b(x,y),,前景背景混合图像,f(x,y)g(x,y)=f(x,y),b(x,y),g(x,y),为去除了背景图像,即去除不需要的叠加性图案,背景图像,差值图像,(,a,)从病人头顶向下拍摄的,X,光照片,(,b,)碘元素注入后拍摄的,X,光照片与背景图像的差值,37,3.3.3,乘法运算,(Multiplication),乘法运算,主要应用举例:,图像的局部显示,改变图像的灰度级,图像的局部显示,38,3.3.3,乘法运算,(Multiplication),(a),原图,(b),乘以,1.2 (c),乘以,2,图,3.8,乘法运算结果,改变图像的灰度级,39,3.3.4,除法运算,(Division),除法运算,简单的除法运算可用于改变图像的灰度级,常用于遥感图像处理中。,可产生对颜色和多光谱图像分析十分重要的比率图像。,在四种算术运算中,减法与加法在图像增强处理中最为有用。,40,3.3.5,逻辑运算,(Logical Operation),图,3.7,图像的逻辑运算,(,a,),A,图 (,b,),B,图,(c)A,、,B,相与结果图,(d)A,、,B,相或结果图,(e)A,取反结果图,“,与,”,、,“,或,”,,,“,非,”,逻辑运算,逻辑运算主要以像素对像素为基础在两幅或多幅图像间进行。,41,42,43,求反运算,获得阴图像,44,求反运算,求子图像的补图像,45,逻辑运算,异或,主要应用:,(1)获得相交子图像,(2)绘制区别于背景的、可恢复的图像,46,异或运算,获得相交子图像,47,异或运算,绘制区别于背景的、可恢复的图像,48,逻辑运算,或,主要应用:,合并子图像,49,3.3.5,逻辑运算,(Logical Operation),“,与,”,、,“,或,”,逻辑运算可以从一幅图像中提取子图像,50,3.4,几何运算,(,Geometric Operation,),几何运算,几何运算就是改变图像中物体对象(像素)之间的空间关系。,从变换性质来分,几何变换可以分为图像的位置变换(平移、镜像、旋转)、形状变换(放大、缩小)以及图像的复合变换等。,3.4,几何运算,(Geometric Operation),51,3.4,几何运算,(Geometric Operation),几何运算,图像几何运算的一般定义为:,式中,唯一的描述了空间变换,即将输入 图像 从 坐标系变换为 坐标系的输出图像 。,52,3.4.1,图像的平移,(Image Translation),图,3.8,像素点的平移,两点之间存在如下关系:,53,2D,图像中的点坐标,(,x,y,),表示成齐次坐标(,H,x,H,y,H,),当,H,1,时,则,(,x,y,1),就称为点,(,x,y,),的规范化齐次坐标。,规范化齐次坐标的前两个数是相应二维点的坐标,没有变,化,仅在原坐标中增加了,H,1,的附加坐标。,由点的齐次坐标(,H,x,H,y,H,)求点的规范化齐次坐标,(,x,y,1),,可按如下公式进行:,齐次坐标,54,齐次坐标的几何意义相当于点,(x,y),落在,3D,空间,H,1,的,平面上,如果将,XOY,平面内的三角形,abc,的各顶点表示成,齐次坐标,(,x,i,y,i,1)(,i,=1,2,3),的形式,就变成,H,1,平面,内的三角形,a,1,b,1,c,1,的各顶点。,z,x,y,O,a,b,c,a,1,b,1,c,1,H,1,齐次坐标,55,3.4.1,图像的平移,(,Image Translation,),以矩阵形式表示平移前后的像素关系为:,56,3.4.1,图像的平移,(Image Translation),图,3.9,图像的平移,(,a,)原始图像 (,b,)平移后的图像,57,3.4.2,图像的镜像,(Image Mirror),(,1,)水平镜像(相对于 轴),水平镜像的变换公式 如下:,图像的镜像(,Mirror,)是指原始图像相对于某一参照面旋转,180,的图像,设原始图像的宽为,,高为,,原始图像中的点为,,对称变换后的点为,。,58,水平镜像的变换公式 如下:,59,3.4.,2,图像的镜像,(Image Mirror),图,3.10,图像水平镜像变换,(a),原始图像,(b),水平镜像,60,61,3.4.2,图像的镜像,(Image Mirror),(,2,)垂直镜像(相对于 轴),垂直镜像的变换公式为如下:,62,3.4.2,图像的镜像,(Image Mirror),图,3.11,图像垂直镜像变换,(a),原始图像,(b),垂直镜像,63,垂直镜像,水平镜像,64,3.4.3,图像的旋转,(,Image Rotation,),一般图像的旋转是以图像的中心为原点,旋转一定的角度,即将图像上的所有像素都旋转一个相同的角度。,1,4,3,2,2,1,3,4,2,1,3,4,65,3.4.3,图像的旋转,(Image Rotation),设原始图像的任意点 经旋转角度 以后到新的位置 ,为表示方便,采用极坐标形式表示,原始的角度为 ,如下图所示:,图,3.12,图像的旋转,原始图像的点,的坐标如下:,66,3.4.3,图像的旋转,(Image Rotation),图像旋转用矩阵表示如下:,旋转到新位置以后点,的坐标如下:,67,3.4.3,图像的旋转,(Image Rotation),图,3.13,图像的旋转,(,a,)原图 (,b,)旋转图,c,)旋转图,如:车牌的旋转校正,68,3.4.3,图像的旋转,(Image Rotation),图像旋转之后,由于数字图像的坐标值必须是整数,因此,可能引起图像部分像素点的局部改变,因此,这时图像的大小也会发生一定的改变。,若图像旋转角,=45,时,则变换关系如下:,69,图像绕任意点旋转,上述的旋转是绕坐标轴原点(,0,,,0,)进行的,如果是绕某一个指定点(,a,,,b,)旋转,则先要将坐标系平移到该点,再进行旋转,然后将旋转后的图像平移回原坐标系。例如,我们这里以图像的中心为旋转中心:,0,y,x,70,3.4.3,图像的旋转,(Image Rotation),以原始图像的点(,1,,,1,)为例,旋转以后,均为小数,经舍入后为(,1,,,0,),产生了位置误差。因此,图像旋转之后,可能会出现一些空白点,需要对这些空白点进行灰度级的插值处理,否则影响旋转后的图像质量。,图像旋转角,=45,时,则变换关系如下:,71,旋转前的图像,72,图旋转,15,并进行插值处理的图像,73,3.4.4,图像的缩放,(Image Zoom),以,=1/2,为例,即图像被缩小为原始图像的一半。图像被缩小一半以后根据目标图像和原始图像像素之间的关系,有如下两种缩小方法。,第一种方法是取原图像的偶数行列组成新图像;,另一种方法是取原图像的奇数行列组成新图像。,74,x=x,0,/2,y=y,0,/2,x,0,y,0,x,y,缩小,正变换,3.4.4,图像的缩放,(Image Zoom),75,x=2x,0,y=2y,0,x,0,y,0,x,y,放大,5.2.1,图像比例缩放变换,在图像放大的正变换中,出现了很多的空格。因此,需要对放大后所多出来的一些空格填入适当的像素值。一般采用,最邻近插值,和,线性插值法,。,插值处理后,放大,但放大后图像的像素点(,0,,,1,)对应于原始图中的像素点(,0,,,0.5,),(,1,,,0,)对应于原始图中的(,0.5,,,0,),原始图像中不存在这些像素点,那么放大图像如何处理这些问题呢?,76,拉伸变换,77,78,79,3.4.5,灰度重采样(,Gray Resampling,),几何运算还需要一个算法用于灰度级的重采样。如果一个输出像素映射到四个输入像素之间,则其灰度值由灰度插值算法决定,如图,3.24,所示。,80,3.4.5,灰度重采样(,Gray Resampling,),图,3.20,最近邻法,81,3.4.5,灰度重采样(,Gray Resampling,),最近邻法:,最近邻法是将 点最近的整数坐标 点的灰度值取为 点的灰度值。在 点各相邻像素间灰度变化较小时,这种方法是一种简单快捷的方法,但当 点相邻像素间灰度差很大时,这种灰度估值方法会产生较大的误差。,82,最近邻插值,83,84,85,86,双线性插值的特点,1.,计算量大,但缩放后图像质量高,不会出现图像不连续的情况。,2.,具有低通滤波器的性质,使高频分量减弱,所以使图像的轮廓在一定程序上受损,87,3.4.5,灰度重采样(,Gray Resampling,),三次内插法,三次内插法不仅考虑 点的直接邻点对它的影响,还考虑到该点周围,16,个邻点的灰度值对它的影响。由连续信号采样定理可知,若对采样值用插值函数 插值,则可精确地恢复原函数,当然也就可精确得到采样点间任意点的值。此方法计算量很大,但精度高,能保持较好的图像边缘。,88,【,例,3.7】,采用三种不同插值法进行图片的放大比较,其,MATLAB,程序如下:,I=imread(d:/lena.bmp);,J1=imresize(I,10,nearest,);%采用最近邻法进行放大10倍,J2=imresize(I,10,bilinear,);%采用双线性插值法进行放大10倍,J3=imresize(I,10,bicubic,);%采用三次内插法进行放大10倍,figure,imshow(I);,title(原图);,figure,imshow(J1);,title(最邻近法);,figure,imshow(J2);,title(双线性插值法);,figure,imshow(J3);,89,原图,90,采用最邻近法放大,10,倍,91,采用双线性插值法进行放大,10,倍,采用三次内插法进行放大,10,倍,92,93,小结(,Summary,),本章主要介绍了图像的基本运算,包括点运算、代数运算、逻辑运算和几何运算,举了相应的,Matlab,实例,并对其相应的应用做了介绍。比如说代数运算可用于去除图像的噪声,进行混合图像的分离等等。其中的几何运算包括两个步骤,一个是空间变换,一个是重采样。然后简单介绍了下常用的三种灰度插值方法,最近邻法、双线性插值法和三次内插法,比较了优缺点。,94,Thank You!,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服