资源描述
专题训练(三) 平行四边形中的动态问题
班别 姓名
(教材P68习题第13题的变式与应用)
【原题】(人教版八年级下册教材第68页第13题)
如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=24 cm,BC=26 cm。点P从点A出发,以1 cm/s的速度向点D运动;点Q从点C同时出发,以3 cm/s的速度向点B运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,使PQ=CD,分别需经过多少时间?为什么?
1.如图,在四边形ABCD中,AD∥BC,AD=6,BC=16,点E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.求当运动时间t为多少秒时,以点P、Q、E、D为顶点的四边形是平行四边形.
2.如图,A,B,C,D为矩形ABCD的四个顶点,AB=25 cm,AD=8 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,运动到点B为止,点Q以2 cm/s的速度向点D移动.
(1)P,Q两点从出发开始到第几秒时,PQ∥AD?
(2)试问:P,Q两点从出发开始到第几秒时,四边形PBCQ的面积为84平方厘米.
3.如图,平行四边形ABCD中,AC=6,BD=8,点P从点A出发以每秒1 cm的速度沿射线AC移动,点Q从点C出发以每秒1 cm的速度沿射线CA移动.
(1)经过几秒,以P,Q,B,D为顶点的四边形为矩形?
(2)若BC⊥AC垂足为C,求(1)中矩形边BQ的长.
4.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=12 cm,BC=18 cm,点P从点A出发以1 cm/s的速度向点D运动;点Q从点C同时出发,以2 cm/s的速度向点B运动,当点Q到达点B时,点P也停止运动,设点P、Q运动的时间为t秒.
(1)作DE⊥BC于E,则CD边的长度为10cm;
(2)从运动开始,当t取何值时,四边形PQBA是矩形?
(3)在整个运动过程中是否存在t值,使得四边形PQCD是菱形?若存在,请求出t值;若不存在,请说明理由.
备用图
5.如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.
(1)求证:四边形PMEN是平行四边形;
(2)请直接写出当AP为何值时,四边形PMEN是菱形;
(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.
参考答案
【例】 (人教版八年级下册教材第68页第13题)
如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=24 cm,BC=26 cm。点P从点A出发,以1 cm/s的速度向点D运动;点Q从点C同时出发,以3 cm/s的速度向点B运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,使PQ=CD,分别需经过多少时间?为什么?
【解答】①设经过t s时,四边形PQCD是平行四边形,
∵AP=t,CQ=3t,DP=24-t,
∴DP=CQ.∴24-t=3t.
∴t=6,即经过6s时,四边形PQCD是平行四边形,此时PQ∥CD,且PQ=CD.
②设经过t s时,PQ=CD,即四边形PQCD是等腰梯形,
∵AP=t,BQ=26-3t,
∴t=26-3t+2,t=7。
综上所述当t=6 s或7 s时,PQ=CD。
【方法归纳】 根据动点运动过程中构造的特殊四边形的性质列方程求解.
1.如图,在四边形ABCD中,AD∥BC,AD=6,BC=16,点E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.求当运动时间t为多少秒时,以点P、Q、E、D为顶点的四边形是平行四边形.
解:由题意可知,AP=t,CQ=2t,CE=BC=8。∵AD∥BC,∴当PD=EQ时,以点P、Q、E、D为顶点的四边形是平行四边形.
当2t<8,即t<4时,点Q在C、E之间,如图甲.此时,PD=AD-AP=6-t,EQ=CE-CQ=8-2t,
由6-t=8-2t得t=2.
当8<2t〈16,且t〈6,即4<t〈6时,点Q在B、E之间,如图乙.此时,PD=AD-AP=6-t,EQ=CQ-CE=2t-8,由6-t=2t-8得t=。
∴当运动时间为2s或s时,以点P、Q、E、D为顶点的四边形是平行四边形.
图甲 图乙
2.如图,A,B,C,D为矩形ABCD的四个顶点,AB=25 cm,AD=8 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,运动到点B为止,点Q以2 cm/s的速度向点D移动.
(1)P,Q两点从出发开始到第几秒时,PQ∥AD?
(2)试问:P,Q两点从出发开始到第几秒时,四边形PBCQ的面积为84平方厘米.
解:(1)设P,Q两点从出发开始到第x秒时,PQ∥AD,
∵四边形ABCD是平行四边形,
∴AB∥CD,即AP∥DQ.
∵PQ∥AD,
∴四边形APQD是平行四边形.
∴AP=DQ。
∴3x=25-2x.解得x=5.
答:P,Q两点从出发开始到第5秒时,PQ∥AD。
(2)设P,Q两点从出发开始到第a秒时,四边形PBCQ的面积为84平方厘米,
∵BP=25-3a,CQ=2a,
∴根据梯形面积公式得:
(25-3a+2a)·8=84。解得a=4。
答:P,Q两点从出发开始到第4秒时,四边形PBCQ的面积为84平方厘米.
3.如图,平行四边形ABCD中,AC=6,BD=8,点P从点A出发以每秒1 cm的速度沿射线AC移动,点Q从点C出发以每秒1 cm的速度沿射线CA移动.
(1)经过几秒,以P,Q,B,D为顶点的四边形为矩形?
(2)若BC⊥AC垂足为C,求(1)中矩形边BQ的长.
解:(1)当t=7秒时,四边形BPDQ为矩形.
理由如下:当t=7秒时,PA=QC=7,
∵AC=6,
∴CP=AQ=1。
∴PQ=BD=8.
∵四边形ABCD为平行四边形,BD=8,AC=6,
∴AO=CO=3.
∴BO=DO=4。
∴OQ=OP=4。
∴四边形BPDQ为平形四边形.
∵PQ=BD=8,
∴四边形BPDQ为矩形.
(2)由(1)得BO=4,CQ=7,
∵BC⊥AC,
∴∠BCA=90°。
∴BC2+CQ2=BQ2.
∴BQ==2.
4.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=12 cm,BC=18 cm,点P从点A出发以1 cm/s的速度向点D运动;点Q从点C同时出发,以2 cm/s的速度向点B运动,当点Q到达点B时,点P也停止运动,设点P、Q运动的时间为t秒.
(1)作DE⊥BC于E,则CD边的长度为10cm;
(2)从运动开始,当t取何值时,四边形PQRA是矩形?
(3)在整个运动过程中是否存在t值,使得四边形PQCD是菱形?若存在,请求出t值;若不存在,请说明理由.
备用图
解:(2)如图1,由题意得:AP=t,DP=12-t,CQ=2t,BQ=18-2t。
要使四边形PQBA是矩形,已有∠B=90°,AD∥BC即AP∥BP,只需满足AP=BQ即t=18-2t,解得t=6,因此,当t=6秒时,四边形PQBA是矩形.
(3)不存在,理由:
如图2,要使四边形PQCD是平行四边形,已有AD∥BC即DP∥CQ,
只需满足DP=CQ即12-t=2t,
∴t=4时,四边形PQCD是平行四边形,
但DP=12-t=8≠10,即DP≠DC,
∴按已经速度运动,四边形PQCD只能是平行四边形,但不可能是菱形.
5.如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.
(1)求证:四边形PMEN是平行四边形;
(2)请直接写出当AP为何值时,四边形PMEN是菱形;
(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.
解:(1)∵M、N、E分别是PD、PC、CD的中点,
∴ME是PC的中位线,NE是PD的中位线.
∴ME∥PC,EN∥PD.
∴四边形PMEN是平行四边形.
(2)当AP=5时,
在Rt△PAD和Rt△PBC中,
∴△PAD≌△PBC(SAS).
∴PD=PC.
∵M、N、E分别是PD、PC、CD的中点,
∴NE=PM=PD,ME=PN=PC.
∴PM=ME=EN=PN。
∴四边形PMEN是菱形.
(3)四边形PMEN可能是矩形.
若四边形PMEN是矩形,则∠DPC=90°。
设PA=x,PB=10-x,
则DP=,CP=.
∵DP2+CP2=DC2,
即16+x2+16+(10-x)2=102,
∴x2-10x+16=0。
解得x=2或x=8.
故当AP=2或AP=8时,四边形PMEN是矩形.
八年级数学备课组 8
展开阅读全文